fix(library/unifier): eager whnf application

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-07-26 10:36:21 -07:00
parent 556861c8d6
commit 23af5ab217
3 changed files with 29 additions and 3 deletions

View file

@ -1262,8 +1262,15 @@ struct unifier_fn {
lean_assert(!is_meta(rhs)); lean_assert(!is_meta(rhs));
buffer<expr> margs; buffer<expr> margs;
expr m = get_app_args(lhs, margs); expr m = get_app_args(lhs, margs);
for (expr & marg : margs) for (expr & marg : margs) {
marg = m_tc->whnf(marg); // Make sure that if marg is reducible to a local constant, then it is replaced with it.
// We need that because of the optimization based on is_easy_flex_rigid_arg
if (!is_local(marg)) {
expr new_marg = m_tc->whnf(marg);
if (is_local(new_marg))
marg = new_marg;
}
}
buffer<constraints> alts; buffer<constraints> alts;
switch (rhs.kind()) { switch (rhs.kind()) {
case expr_kind::Var: case expr_kind::Meta: case expr_kind::Var: case expr_kind::Meta:

View file

@ -17,7 +17,7 @@ axiom mul_succ_right (n m : nat) : n * succ m = n * m + n
axiom add_assoc (n m k : nat) : (n + m) + k = n + (m + k) axiom add_assoc (n m k : nat) : (n + m) + k = n + (m + k)
axiom add_right_comm (n m k : nat) : n + m + k = n + k + m axiom add_right_comm (n m k : nat) : n + m + k = n + k + m
axiom induction_on {P : nat → Prop} (a : nat) (H1 : P zero) (H2 : ∀ (n : nat) (IH : P n), P (succ n)) : P a axiom induction_on {P : nat → Prop} (a : nat) (H1 : P zero) (H2 : ∀ (n : nat) (IH : P n), P (succ n)) : P a
set_option unifier.max_steps 50000
theorem mul_add_distr_left (n m k : nat) : (n + m) * k = n * k + m * k theorem mul_add_distr_left (n m k : nat) : (n + m) * k = n * k + m * k
:= induction_on k := induction_on k
(calc (calc

View file

@ -0,0 +1,19 @@
import logic num
using eq_proofs
inductive nat : Type :=
| zero : nat
| succ : nat → nat
definition add (x y : nat) : nat := nat_rec x (λn r, succ r) y
infixl `+`:65 := add
definition mul (n m : nat) := nat_rec zero (fun m x, x + n) m
infixl `*`:75 := mul
axiom mul_zero_right (n : nat) : n * zero = zero
variable P : nat → Prop
print "==========================="
theorem tst (n : nat) (H : P (n * zero)) : P zero
:= subst (mul_zero_right _) H