refactor(library/data/set/*): rename setext to ext
This commit is contained in:
parent
d77bdaabc2
commit
244052b413
3 changed files with 8 additions and 8 deletions
|
@ -134,7 +134,7 @@ by apply (to_finset_eq_of_to_set_eq !finset.to_set_upto)
|
|||
|
||||
theorem finite_powerset (s : set A) [fins : finite s] : finite (𝒫 s) :=
|
||||
assert H : (𝒫 s) = finset.to_set '[finset.to_set (#finset 𝒫 (to_finset s))],
|
||||
from setext (take t, iff.intro
|
||||
from ext (take t, iff.intro
|
||||
(suppose t ∈ 𝒫 s,
|
||||
assert t ⊆ s, from this,
|
||||
assert finite t, from finite_subset this,
|
||||
|
|
|
@ -22,7 +22,7 @@ notation f `'[`:max a `]` := image f a
|
|||
|
||||
theorem image_eq_image_of_eq_on {f1 f2 : X → Y} {a : set X} (H1 : eq_on f1 f2 a) :
|
||||
f1 '[a] = f2 '[a] :=
|
||||
setext (take y, iff.intro
|
||||
ext (take y, iff.intro
|
||||
(assume H2,
|
||||
obtain x (H3 : x ∈ a ∧ f1 x = y), from H2,
|
||||
have H4 : x ∈ a, from and.left H3,
|
||||
|
@ -42,7 +42,7 @@ theorem mem_image_of_mem (f : X → Y) {x : X} {a : set X} (H : x ∈ a) : f x
|
|||
mem_image H rfl
|
||||
|
||||
lemma image_compose (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] :=
|
||||
setext (take z,
|
||||
ext (take z,
|
||||
iff.intro
|
||||
(assume Hz : z ∈ (f ∘ g) '[a],
|
||||
obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz,
|
||||
|
@ -60,7 +60,7 @@ mem_image (H Hx₁) Hx₂
|
|||
|
||||
theorem image_union (f : X → Y) (s t : set X) :
|
||||
image f (s ∪ t) = image f s ∪ image f t :=
|
||||
setext (take y, iff.intro
|
||||
ext (take y, iff.intro
|
||||
(assume H : y ∈ image f (s ∪ t),
|
||||
obtain x [(xst : x ∈ s ∪ t) (fxy : f x = y)], from H,
|
||||
or.elim xst
|
||||
|
|
|
@ -84,7 +84,7 @@ lemma lmul_inj_on (a : A) (H : set A) : inj_on (lmul_by a) H :=
|
|||
inj_on_of_left_inv_on (lmul_inv_on a H)
|
||||
|
||||
lemma glcoset_eq_lcoset a (H : set A) : a ∘> H = coset.l a H :=
|
||||
setext
|
||||
ext
|
||||
begin
|
||||
intro x,
|
||||
rewrite [↑glcoset, ↑coset.l, ↑image, ↑set_of, ↑mem, ↑coset.lmul],
|
||||
|
@ -103,7 +103,7 @@ lemma glcoset_eq_lcoset a (H : set A) : a ∘> H = coset.l a H :=
|
|||
lemma grcoset_eq_rcoset a (H : set A) : H <∘ a = coset.r a H :=
|
||||
begin
|
||||
rewrite [↑grcoset, ↑coset.r, ↑image, ↑coset.rmul, ↑set_of],
|
||||
apply setext, rewrite ↑mem,
|
||||
apply ext, rewrite ↑mem,
|
||||
intro x,
|
||||
apply iff.intro,
|
||||
show H (x * a⁻¹) → (∃ (x_1 : A), H x_1 ∧ x_1 * a = x), from
|
||||
|
@ -215,14 +215,14 @@ lemma subgroup_coset_id : ∀ a, a ∈ H → (a ∘> H = H ∧ H <∘ a = H) :=
|
|||
assert Pr : H <∘ a ⊆ H, from closed_rcontract a H subg_mul_closed PHa,
|
||||
assert PHainv : H a⁻¹, from subg_has_inv a PHa,
|
||||
and.intro
|
||||
(setext (assume x,
|
||||
(ext (assume x,
|
||||
begin
|
||||
esimp [glcoset, mem],
|
||||
apply iff.intro,
|
||||
apply Pl,
|
||||
intro PHx, exact (subg_mul_closed a⁻¹ x PHainv PHx)
|
||||
end))
|
||||
(setext (assume x,
|
||||
(ext (assume x,
|
||||
begin
|
||||
esimp [grcoset, mem],
|
||||
apply iff.intro,
|
||||
|
|
Loading…
Reference in a new issue