feat(hott): add primitive hits
This commit is contained in:
parent
cb5b07093f
commit
2469b8a2f8
4 changed files with 310 additions and 1 deletions
124
hott/hit/pushout.hlean
Normal file
124
hott/hit/pushout.hlean
Normal file
|
@ -0,0 +1,124 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: hit.pushout
|
||||||
|
Authors: Floris van Doorn
|
||||||
|
|
||||||
|
Declaration of pushout
|
||||||
|
-/
|
||||||
|
|
||||||
|
open colimit bool eq
|
||||||
|
|
||||||
|
namespace pushout
|
||||||
|
context
|
||||||
|
|
||||||
|
universe u
|
||||||
|
parameters {TL BL TR : Type.{u}} (f : TL → BL) (g : TL → TR)
|
||||||
|
|
||||||
|
inductive pushout_ob :=
|
||||||
|
| tl : pushout_ob
|
||||||
|
| bl : pushout_ob
|
||||||
|
| tr : pushout_ob
|
||||||
|
|
||||||
|
open pushout_ob
|
||||||
|
|
||||||
|
definition pushout_diag [reducible] : diagram :=
|
||||||
|
diagram.mk pushout_ob
|
||||||
|
bool
|
||||||
|
(λi, pushout_ob.rec_on i TL BL TR)
|
||||||
|
(λj, bool.rec_on j tl tl)
|
||||||
|
(λj, bool.rec_on j bl tr)
|
||||||
|
(λj, bool.rec_on j f g)
|
||||||
|
|
||||||
|
local notation `D` := pushout_diag
|
||||||
|
-- open bool
|
||||||
|
-- definition pushout_diag : diagram :=
|
||||||
|
-- diagram.mk pushout_ob
|
||||||
|
-- bool
|
||||||
|
-- (λi, match i with | tl := TL | tr := TR | bl := BL end)
|
||||||
|
-- (λj, match j with | tt := tl | ff := tl end)
|
||||||
|
-- (λj, match j with | tt := bl | ff := tr end)
|
||||||
|
-- (λj, match j with | tt := f | ff := g end)
|
||||||
|
|
||||||
|
definition pushout := colimit pushout_diag
|
||||||
|
local attribute pushout_diag [instance]
|
||||||
|
|
||||||
|
definition inl (x : BL) : pushout :=
|
||||||
|
@ι _ _ x
|
||||||
|
|
||||||
|
definition inr (x : TR) : pushout :=
|
||||||
|
@ι _ _ x
|
||||||
|
|
||||||
|
definition coherence (x : TL) : inl (f x) = @ι _ _ x :=
|
||||||
|
@cglue _ _ x
|
||||||
|
|
||||||
|
definition glue (x : TL) : inl (f x) = inr (g x) :=
|
||||||
|
@cglue _ _ x ⬝ (@cglue _ _ x)⁻¹
|
||||||
|
|
||||||
|
protected definition rec {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
||||||
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
|
||||||
|
(y : pushout) : P y :=
|
||||||
|
begin
|
||||||
|
fapply (@colimit.rec_on _ _ y),
|
||||||
|
{ intros [i, x], cases i,
|
||||||
|
exact (coherence x ▹ Pinl (f x)),
|
||||||
|
apply Pinl,
|
||||||
|
apply Pinr},
|
||||||
|
{ intros [j, x], cases j,
|
||||||
|
exact idp,
|
||||||
|
esimp [pushout_ob.cases_on, pushout_diag],
|
||||||
|
-- change (transport P (@cglue _ tt x) (Pinr (g x)) = transport P (coherence x) (Pinl (f x))),
|
||||||
|
-- apply concat;rotate 1;apply (idpath (coherence x ▹ Pinl (f x))),
|
||||||
|
-- apply concat;apply (ap (transport _ _));apply (idpath (Pinr (g x))),
|
||||||
|
apply tr_eq_of_eq_inv_tr,
|
||||||
|
-- rewrite -{(transport (λ (x : pushout), P x) (inverse (coherence x)) (transport P (@cglue _ tt x) (Pinr (g x))))}tr_con,
|
||||||
|
apply concat, rotate 1, apply tr_con,
|
||||||
|
rewrite -Pglue}
|
||||||
|
end
|
||||||
|
|
||||||
|
protected definition rec_on {P : pushout → Type} (y : pushout) (Pinl : Π(x : BL), P (inl x))
|
||||||
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x)) : P y :=
|
||||||
|
rec Pinl Pinr Pglue y
|
||||||
|
|
||||||
|
definition comp_inl {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
||||||
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
|
||||||
|
(x : BL) : rec Pinl Pinr Pglue (inl x) = Pinl x :=
|
||||||
|
@colimit.comp_incl _ _ _ _ _ _ --idp
|
||||||
|
|
||||||
|
definition comp_inr {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
||||||
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
|
||||||
|
(x : TR) : rec Pinl Pinr Pglue (inr x) = Pinr x :=
|
||||||
|
@colimit.comp_incl _ _ _ _ _ _ --idp
|
||||||
|
|
||||||
|
definition comp_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
||||||
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), glue x ▹ Pinl (f x) = Pinr (g x))
|
||||||
|
(x : TL) : apD (rec Pinl Pinr Pglue) (glue x) = sorry ⬝ Pglue x ⬝ sorry :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
end
|
||||||
|
end pushout
|
||||||
|
|
||||||
|
open pushout equiv is_equiv unit
|
||||||
|
|
||||||
|
namespace test
|
||||||
|
definition foo (u : empty) : unit := star
|
||||||
|
|
||||||
|
example : pushout foo foo ≃ bool :=
|
||||||
|
begin
|
||||||
|
fapply equiv.MK,
|
||||||
|
{ intro x, fapply (pushout.rec_on _ _ x),
|
||||||
|
{ intro u, exact ff},
|
||||||
|
{ intro u, exact tt},
|
||||||
|
{ intro c, cases c}},
|
||||||
|
{ intro b, cases b,
|
||||||
|
{ exact (inl _ _ ⋆)},
|
||||||
|
{ exact (inr _ _ ⋆)},},
|
||||||
|
{ intro b, cases b, apply comp_inl, apply comp_inr},
|
||||||
|
{ intro x, fapply (pushout.rec_on _ _ x),
|
||||||
|
{ intro u, cases u, rewrite [↑function.compose,↑pushout.rec_on,comp_inl]},
|
||||||
|
{ intro u, cases u, rewrite [↑function.compose,↑pushout.rec_on,comp_inr]},
|
||||||
|
{ intro c, cases c}},
|
||||||
|
end
|
||||||
|
|
||||||
|
end test
|
41
hott/hit/suspension.hlean
Normal file
41
hott/hit/suspension.hlean
Normal file
|
@ -0,0 +1,41 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: hit.suspension
|
||||||
|
Authors: Floris van Doorn
|
||||||
|
|
||||||
|
Declaration of suspension
|
||||||
|
-/
|
||||||
|
|
||||||
|
import .pushout
|
||||||
|
|
||||||
|
open pushout unit eq
|
||||||
|
|
||||||
|
definition suspension (A : Type) : Type := pushout (λ(a : A), star) (λ(a : A), star)
|
||||||
|
|
||||||
|
namespace suspension
|
||||||
|
|
||||||
|
definition north (A : Type) : suspension A :=
|
||||||
|
inl _ _ star
|
||||||
|
|
||||||
|
definition south (A : Type) : suspension A :=
|
||||||
|
inr _ _ star
|
||||||
|
|
||||||
|
definition merid {A : Type} (a : A) : north A = south A :=
|
||||||
|
glue _ _ a
|
||||||
|
|
||||||
|
protected definition rec {A : Type} {P : suspension A → Type} (PN : P !north) (PS : P !south)
|
||||||
|
(Pmerid : Π(a : A), merid a ▹ PN = PS) (y : suspension A) : P y :=
|
||||||
|
begin
|
||||||
|
fapply (pushout.rec_on _ _ y),
|
||||||
|
{ intro u, cases u, exact PN},
|
||||||
|
{ intro u, cases u, exact PS},
|
||||||
|
{ exact Pmerid},
|
||||||
|
end
|
||||||
|
|
||||||
|
protected definition rec_on {A : Type} {P : suspension A → Type} (y : suspension A)
|
||||||
|
(PN : P !north) (PS : P !south) (Pmerid : Π(a : A), merid a ▹ PN = PS) : P y :=
|
||||||
|
rec PN PS Pmerid y
|
||||||
|
|
||||||
|
end suspension
|
|
@ -12,4 +12,4 @@ import init.bool init.num init.priority init.relation init.wf
|
||||||
import init.types.sigma init.types.prod init.types.empty
|
import init.types.sigma init.types.prod init.types.empty
|
||||||
import init.trunc init.path init.equiv init.util
|
import init.trunc init.path init.equiv init.util
|
||||||
import init.axioms.ua init.axioms.funext_of_ua
|
import init.axioms.ua init.axioms.funext_of_ua
|
||||||
import init.hedberg init.nat
|
import init.hedberg init.nat init.hit
|
||||||
|
|
144
hott/init/hit.hlean
Normal file
144
hott/init/hit.hlean
Normal file
|
@ -0,0 +1,144 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Module: init.hit
|
||||||
|
Authors: Floris van Doorn
|
||||||
|
|
||||||
|
Declaration of the primitive hits in Lean
|
||||||
|
-/
|
||||||
|
|
||||||
|
prelude
|
||||||
|
|
||||||
|
import .trunc
|
||||||
|
|
||||||
|
open is_trunc eq
|
||||||
|
|
||||||
|
constant trunc.{u} (n : trunc_index) (A : Type.{u}) : Type.{u}
|
||||||
|
|
||||||
|
namespace trunc
|
||||||
|
|
||||||
|
constant tr {n : trunc_index} {A : Type} (a : A) : trunc n A
|
||||||
|
constant is_trunc_trunc (n : trunc_index) (A : Type) : is_trunc n (trunc n A)
|
||||||
|
|
||||||
|
attribute is_trunc_trunc [instance]
|
||||||
|
|
||||||
|
/-protected-/ constant rec {n : trunc_index} {A : Type} {P : trunc n A → Type}
|
||||||
|
[Pt : Πaa, is_trunc n (P aa)] (H : Πa, P (tr a)) : Πaa, P aa
|
||||||
|
|
||||||
|
protected definition rec_on {n : trunc_index} {A : Type} {P : trunc n A → Type} (aa : trunc n A)
|
||||||
|
[Pt : Πaa, is_trunc n (P aa)] (H : Πa, P (tr a)) : P aa :=
|
||||||
|
trunc.rec H aa
|
||||||
|
|
||||||
|
definition comp_tr {n : trunc_index} {A : Type} {P : trunc n A → Type}
|
||||||
|
[Pt : Πaa, is_trunc n (P aa)] (H : Πa, P (tr a)) (a : A) : trunc.rec H (tr a) = H a :=
|
||||||
|
sorry --idp
|
||||||
|
|
||||||
|
end trunc
|
||||||
|
|
||||||
|
constant cylinder.{u v} {A : Type.{u}} {B : Type.{v}} (f : A → B) : B → Type.{max u v}
|
||||||
|
|
||||||
|
namespace cylinder
|
||||||
|
|
||||||
|
constant base {A B : Type} (f : A → B) (b : B) : cylinder f b
|
||||||
|
constant top {A B : Type} (f : A → B) (a : A) : cylinder f (f a)
|
||||||
|
constant seg {A B : Type} (f : A → B) (a : A) : top f a = base f (f a)
|
||||||
|
|
||||||
|
axiom is_trunc_trunc (n : trunc_index) (A : Type) : is_trunc n (trunc n A)
|
||||||
|
|
||||||
|
attribute is_trunc_trunc [instance]
|
||||||
|
|
||||||
|
/-protected-/ constant rec {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
||||||
|
(Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
||||||
|
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a))
|
||||||
|
: Π{b : B} (x : cylinder f b), P x
|
||||||
|
|
||||||
|
protected definition rec_on {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
||||||
|
{b : B} (x : cylinder f b) (Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
||||||
|
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) : P x :=
|
||||||
|
cylinder.rec Pbase Ptop Pseg x
|
||||||
|
|
||||||
|
definition comp_base {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
||||||
|
(Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
||||||
|
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) (b : B) :
|
||||||
|
cylinder.rec Pbase Ptop Pseg (base f b) = Pbase b :=
|
||||||
|
sorry --idp
|
||||||
|
|
||||||
|
definition comp_top {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
||||||
|
(Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
||||||
|
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) (a : A) :
|
||||||
|
cylinder.rec Pbase Ptop Pseg (top f a) = Ptop a :=
|
||||||
|
sorry --idp
|
||||||
|
|
||||||
|
definition comp_seg {A B : Type} {f : A → B} {P : Π{b : B}, cylinder f b → Type}
|
||||||
|
(Pbase : Π(b : B), P (base f b)) (Ptop : Π(a : A), P (top f a))
|
||||||
|
(Pseg : Π(a : A), seg f a ▹ Ptop a = Pbase (f a)) (a : A) :
|
||||||
|
apD (cylinder.rec Pbase Ptop Pseg) (seg f a) = sorry ⬝ Pseg a ⬝ sorry :=
|
||||||
|
--the sorry's in the statement can be removed when comp_base/comp_top are definitional
|
||||||
|
sorry
|
||||||
|
|
||||||
|
end cylinder
|
||||||
|
|
||||||
|
|
||||||
|
namespace colimit
|
||||||
|
structure diagram [class] :=
|
||||||
|
(Iob : Type)
|
||||||
|
(Ihom : Type)
|
||||||
|
(ob : Iob → Type)
|
||||||
|
(dom cod : Ihom → Iob)
|
||||||
|
(hom : Π(j : Ihom), ob (dom j) → ob (cod j))
|
||||||
|
end colimit
|
||||||
|
open eq colimit colimit.diagram
|
||||||
|
|
||||||
|
constant colimit.{u v w} : diagram.{u v w} → Type.{max u v w}
|
||||||
|
|
||||||
|
namespace colimit
|
||||||
|
|
||||||
|
constant inclusion : Π [D : diagram] {i : Iob}, ob i → colimit D
|
||||||
|
abbreviation ι := @inclusion
|
||||||
|
|
||||||
|
constant cglue : Π [D : diagram] (j : Ihom) (x : ob (dom j)), ι (hom j x) = ι x
|
||||||
|
|
||||||
|
/-protected-/ constant rec : Π [D : diagram] {P : colimit D → Type}
|
||||||
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
||||||
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
||||||
|
(y : colimit D), P y
|
||||||
|
|
||||||
|
definition comp_incl [D : diagram] {P : colimit D → Type}
|
||||||
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
||||||
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
||||||
|
{i : Iob} (x : ob i) : rec Pincl Pglue (ι x) = Pincl x :=
|
||||||
|
sorry --idp
|
||||||
|
|
||||||
|
definition comp_cglue [D : diagram] {P : colimit D → Type}
|
||||||
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
||||||
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x)
|
||||||
|
{j : Ihom} (x : ob (dom j)) : apD (rec Pincl Pglue) (cglue j x) = sorry ⬝ Pglue j x ⬝ sorry :=
|
||||||
|
--the sorry's in the statement can be removed when comp_incl is definitional
|
||||||
|
sorry
|
||||||
|
|
||||||
|
protected definition rec_on [D : diagram] {P : colimit D → Type} (y : colimit D)
|
||||||
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
||||||
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▹ Pincl (hom j x) = Pincl x) : P y :=
|
||||||
|
colimit.rec Pincl Pglue y
|
||||||
|
|
||||||
|
end colimit
|
||||||
|
|
||||||
|
exit
|
||||||
|
--ALTERNATIVE: COLIMIT without definition "diagram"
|
||||||
|
constant colimit.{u v w} : Π {I : Type.{u}} {J : Type.{v}} (ob : I → Type.{w}) {dom : J → I}
|
||||||
|
{cod : J → I} (hom : Π⦃j : J⦄, ob (dom j) → ob (cod j)), Type.{max u v w}
|
||||||
|
|
||||||
|
namespace colimit
|
||||||
|
|
||||||
|
constant inclusion : Π {I J : Type} {ob : I → Type} {dom : J → I} {cod : J → I}
|
||||||
|
(hom : Π⦃j : J⦄, ob (dom j) → ob (cod j)) {i : I}, ob i → colimit ob hom
|
||||||
|
abbreviation ι := @inclusion
|
||||||
|
|
||||||
|
constant glue : Π {I J : Type} {ob : I → Type} {dom : J → I} {cod : J → I}
|
||||||
|
(hom : Π⦃j : J⦄, ob (dom j) → ob (cod j)) (j : J) (a : ob (dom j)), ι hom (hom a) = ι hom a
|
||||||
|
|
||||||
|
/-protected-/ constant rec : Π {I J : Type} {ob : I → Type} {dom : J → I} {cod : J → I}
|
||||||
|
(hom : Π⦃j : J⦄, ob (dom j) → ob (cod j)) {P : colimit ob hom → Type}
|
||||||
|
-- ...
|
||||||
|
end colimit
|
Loading…
Reference in a new issue