From 25aa5b3939977828b8d2caab7dbd66847c04e806 Mon Sep 17 00:00:00 2001 From: Rob Lewis Date: Fri, 31 Jul 2015 09:09:18 -0400 Subject: [PATCH] feat(library/data/nat): define least function for nat --- library/data/nat/order.lean | 69 ++++++++++++++++++++++++++++++++++++- 1 file changed, 68 insertions(+), 1 deletion(-) diff --git a/library/data/nat/order.lean b/library/data/nat/order.lean index 8bee921fc..524923616 100644 --- a/library/data/nat/order.lean +++ b/library/data/nat/order.lean @@ -290,8 +290,9 @@ lemma lt_succ_of_lt {i j : nat} : i < j → i < succ j := assume Plt, lt.trans Plt (self_lt_succ j) /- other forms of induction -/ + protected definition strong_rec_on {P : nat → Type} (n : ℕ) (H : ∀n, (∀m, m < n → P m) → P n) : P n := -nat.rec (λm h, absurd h !not_lt_zero) +nat.rec (λm, not.elim !not_lt_zero) (λn' (IH : ∀ {m : ℕ}, m < n' → P m) m l, or.by_cases (lt_or_eq_of_le (le_of_lt_succ l)) IH (λ e, eq.rec (H n' @IH) e⁻¹)) (succ n) n !lt_succ_self @@ -519,6 +520,72 @@ section greatest have ltim : i < m, from lt_of_le_of_ne (le_of_lt_succ ltin) neim, apply ih ltim}} end + + definition least : ℕ → ℕ + | 0 := 0 + | (succ n) := if P (least n) then least n else succ n + + theorem least_of_bound {n : ℕ} (H : P n) : P (least P n) := + begin + induction n with [m, ih], + rewrite ↑least, + apply H, + rewrite ↑least, + cases decidable.em (P (least P m)) with [Hlp, Hlp], + rewrite [if_pos Hlp], + apply Hlp, + rewrite [if_neg Hlp], + apply H + end + + theorem bound_le_least (n : ℕ) : n ≥ least P n := + begin + induction n with [m, ih], + rewrite ↑least, apply le.refl, + rewrite ↑least, + cases decidable.em (P (least P m)) with [Psm, Pnsm], + rewrite [if_pos Psm], + apply le.trans ih !le_succ, + rewrite [if_neg Pnsm], + apply le.refl + end + + theorem least_of_lt {i n : ℕ} (ltin : i < n) (H : P i) : P (least P n) := + begin + induction n with [m, ih], + exact absurd ltin !not_lt_zero, + rewrite ↑least, + cases decidable.em (P (least P m)) with [Psm, Pnsm], + rewrite [if_pos Psm], + apply Psm, + rewrite [if_neg Pnsm], + cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq], + exact absurd (ih Hlt) Pnsm, + rewrite Heq at H, + exact absurd (least_of_bound P H) Pnsm + end + + theorem ge_least_of_lt {i n : ℕ} (ltin : i < n) (Hi : P i) : i ≥ least P n := + begin + induction n with [m, ih], + exact absurd ltin !not_lt_zero, + rewrite ↑least, + cases decidable.em (P (least P m)) with [Psm, Pnsm], + rewrite [if_pos Psm], + cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq], + apply ih Hlt, + rewrite Heq, + apply bound_le_least, + rewrite [if_neg Pnsm], + cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq], + apply absurd (least_of_lt P Hlt Hi) Pnsm, + rewrite Heq at Hi, + apply absurd (least_of_bound P Hi) Pnsm + end + + theorem least_lt {n i : ℕ} (ltin : i < n) (Hi : P i) : least P n < n := + lt_of_le_of_lt (ge_least_of_lt P ltin Hi) ltin + end greatest end nat