diff --git a/library/data/sigma/decl.lean b/library/data/sigma/decl.lean index eb7dc2477..5abf408dd 100644 --- a/library/data/sigma/decl.lean +++ b/library/data/sigma/decl.lean @@ -7,3 +7,15 @@ structure sigma {A : Type} (B : A → Type) := dpair :: (dpr1 : A) (dpr2 : B dpr1) notation `Σ` binders `,` r:(scoped P, sigma P) := r + +namespace sigma + + notation `dpr₁` := dpr1 + notation `dpr₂` := dpr2 + + namespace ops + postfix `.1`:10000 := dpr1 + postfix `.2`:10000 := dpr2 + notation `⟨` t:(foldr `,`:0 (e r, sigma.dpair e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \> + end ops +end sigma diff --git a/library/data/sigma/thms.lean b/library/data/sigma/thms.lean index a29a8f8b8..720b700bc 100644 --- a/library/data/sigma/thms.lean +++ b/library/data/sigma/thms.lean @@ -2,24 +2,13 @@ -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn import data.sigma.decl -open inhabited eq.ops +open inhabited eq.ops sigma.ops namespace sigma - - notation `dpr₁` := dpr1 - notation `dpr₂` := dpr2 - - namespace ops - postfix `.1`:10000 := dpr1 - postfix `.2`:10000 := dpr2 - notation `(` t:(foldr `;`:0 (e r, sigma.dpair e r)) `)` := t - end ops - - open ops universe variables u v variables {A A' : Type.{u}} {B : A → Type.{v}} {B' : A' → Type.{v}} - definition unpack {C : (Σa, B a) → Type} {u : Σa, B a} (H : C ( u.1 ; u.2)) : C u := + definition unpack {C : (Σa, B a) → Type} {u : Σa, B a} (H : C ⟨u.1 , u.2⟩) : C u := destruct u (λx y H, H) H theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) : @@ -48,8 +37,8 @@ namespace sigma variables {C : Πa, B a → Type} {D : Πa b, C a b → Type} - definition dtrip (a : A) (b : B a) (c : C a b) := (a; b; c) - definition dquad (a : A) (b : B a) (c : C a b) (d : D a b c) := (a; b; c; d) + definition dtrip (a : A) (b : B a) (c : C a b) := ⟨a, b, c⟩ + definition dquad (a : A) (b : B a) (c : C a b) (d : D a b c) := ⟨a, b, c, d⟩ definition dpr1' (x : Σ a, B a) := x.1 definition dpr2' (x : Σ a b, C a b) := x.2.1 @@ -59,12 +48,12 @@ namespace sigma theorem dtrip_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : cast (dcongr_arg2 C H₁ H₂) c₁ = c₂) : - (a₁; b₁; c₁) = (a₂; b₂; c₂) := + ⟨a₁, b₁, c₁⟩ = ⟨a₂, b₂, c₂⟩ := dcongr_arg3 dtrip H₁ H₂ H₃ theorem ndtrip_eq {A B : Type} {C : A → B → Type} {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : b₁ = b₂) - (H₃ : cast (congr_arg2 C H₁ H₂) c₁ = c₂) : (a₁; b₁; c₁) = (a₂; b₂; c₂) := + (H₃ : cast (congr_arg2 C H₁ H₂) c₁ = c₂) : ⟨a₁, b₁, c₁⟩ = ⟨a₂, b₂, c₂⟩ := hdcongr_arg3 dtrip H₁ (heq.from_eq H₂) H₃ theorem ndtrip_equal {A B : Type} {C : A → B → Type} {p₁ p₂ : Σa b, C a b} :