feat(library/hott) use class inference for IsEquiv
This commit is contained in:
parent
479eabb416
commit
261f8a014a
1 changed files with 88 additions and 80 deletions
|
@ -26,20 +26,22 @@ IsEquiv f
|
||||||
|
|
||||||
namespace IsEquiv
|
namespace IsEquiv
|
||||||
|
|
||||||
definition inv {A B : Type} {f : A → B} (H : IsEquiv f) : B → A :=
|
definition inv [coercion] {A B : Type} (f : A → B) [H : IsEquiv f] : B → A :=
|
||||||
IsEquiv.rec (λinv retr sect adj, inv) H
|
IsEquiv.rec (λinv retr sect adj, inv) H
|
||||||
|
|
||||||
-- TODO: note: does not type check without giving the type
|
-- TODO: note: does not type check without giving the type
|
||||||
definition retr {A B : Type} {f : A → B} (H : IsEquiv f) : Sect (inv H) f :=
|
definition retr [coercion] {A B : Type} (f : A → B) [H : IsEquiv f] : Sect (inv f) f :=
|
||||||
IsEquiv.rec (λinv retr sect adj, retr) H
|
IsEquiv.rec (λinv retr sect adj, retr) H
|
||||||
|
|
||||||
definition sect {A B : Type} {f : A → B} (H : IsEquiv f) : Sect f (inv H) :=
|
definition sect [coercion] {A B : Type} (f : A → B) [H : IsEquiv f] : Sect f (inv f) :=
|
||||||
IsEquiv.rec (λinv retr sect adj, sect) H
|
IsEquiv.rec (λinv retr sect adj, sect) H
|
||||||
|
|
||||||
definition adj {A B : Type} {f : A → B} (H : IsEquiv f) :
|
definition adj [coercion] {A B : Type} (f : A → B) [H : IsEquiv f] :
|
||||||
Πx, retr H (f x) ≈ ap f (sect H x) :=
|
Πx, retr f (f x) ≈ ap f (sect f x) :=
|
||||||
IsEquiv.rec (λinv retr sect adj, adj) H
|
IsEquiv.rec (λinv retr sect adj, adj) H
|
||||||
|
|
||||||
|
notation e `⁻¹` := inv e
|
||||||
|
|
||||||
end IsEquiv
|
end IsEquiv
|
||||||
|
|
||||||
-- Structure Equiv
|
-- Structure Equiv
|
||||||
|
@ -59,7 +61,6 @@ namespace Equiv
|
||||||
Equiv.rec (λequiv_fun equiv_isequiv, equiv_isequiv) e
|
Equiv.rec (λequiv_fun equiv_isequiv, equiv_isequiv) e
|
||||||
|
|
||||||
infix `≃`:25 := Equiv
|
infix `≃`:25 := Equiv
|
||||||
notation e `⁻¹` := IsEquiv.inv e
|
|
||||||
|
|
||||||
end Equiv
|
end Equiv
|
||||||
|
|
||||||
|
@ -74,14 +75,14 @@ namespace IsEquiv
|
||||||
|
|
||||||
-- The composition of two equivalences is, again, an equivalence.
|
-- The composition of two equivalences is, again, an equivalence.
|
||||||
|
|
||||||
definition comp_closed [instance] (Hf : IsEquiv f) (Hg : IsEquiv g) : (IsEquiv (g ∘ f)) :=
|
definition comp_closed (Hf : IsEquiv f) (Hg : IsEquiv g) : (IsEquiv (g ∘ f)) :=
|
||||||
IsEquiv_mk ((inv Hf) ∘ (inv Hg))
|
IsEquiv_mk ((inv f) ∘ (inv g))
|
||||||
(λc, ap g (retr Hf ((inv Hg) c)) ⬝ retr Hg c)
|
(λc, ap g (retr f (g⁻¹ c)) ⬝ retr g c)
|
||||||
(λa, ap (inv Hf) (sect Hg (f a)) ⬝ sect Hf a)
|
(λa, ap (inv f) (sect g (f a)) ⬝ sect f a)
|
||||||
(λa, (whiskerL _ (adj Hg (f a))) ⬝
|
(λa, (whiskerL _ (adj g (f a))) ⬝
|
||||||
(ap_pp g _ _)⁻¹ ⬝
|
(ap_pp g _ _)⁻¹ ⬝
|
||||||
ap02 g (concat_A1p (retr Hf) (sect Hg (f a))⁻¹ ⬝
|
ap02 g (concat_A1p (retr f) (sect g (f a))⁻¹ ⬝
|
||||||
(ap_compose (inv Hf) f _ ◾ adj Hf a) ⬝
|
(ap_compose (inv f) f _ ◾ adj f a) ⬝
|
||||||
(ap_pp f _ _)⁻¹
|
(ap_pp f _ _)⁻¹
|
||||||
) ⬝
|
) ⬝
|
||||||
(ap_compose f g _)⁻¹
|
(ap_compose f g _)⁻¹
|
||||||
|
@ -93,19 +94,19 @@ namespace IsEquiv
|
||||||
|
|
||||||
-- Any function pointwise equal to an equivalence is an equivalence as well.
|
-- Any function pointwise equal to an equivalence is an equivalence as well.
|
||||||
definition homotopic (Hf : IsEquiv f) (Heq : f ∼ f') : (IsEquiv f') :=
|
definition homotopic (Hf : IsEquiv f) (Heq : f ∼ f') : (IsEquiv f') :=
|
||||||
let sect' := (λ b, (Heq (inv Hf b))⁻¹ ⬝ retr Hf b) in
|
let sect' := (λ b, (Heq (inv f b))⁻¹ ⬝ retr f b) in
|
||||||
let retr' := (λ a, (ap (inv Hf) (Heq a))⁻¹ ⬝ sect Hf a) in
|
let retr' := (λ a, (ap (inv f) (Heq a))⁻¹ ⬝ sect f a) in
|
||||||
let adj' := (λ (a : A),
|
let adj' := (λ (a : A),
|
||||||
let ff'a := Heq a in
|
let ff'a := Heq a in
|
||||||
let invf := inv Hf in
|
let invf := inv f in
|
||||||
let secta := sect Hf a in
|
let secta := sect f a in
|
||||||
let retrfa := retr Hf (f a) in
|
let retrfa := retr f (f a) in
|
||||||
let retrf'a := retr Hf (f' a) in
|
let retrf'a := retr f (f' a) in
|
||||||
have eq1 : _ ≈ _,
|
have eq1 : _ ≈ _,
|
||||||
from calc ap f secta ⬝ ff'a
|
from calc ap f secta ⬝ ff'a
|
||||||
≈ retrfa ⬝ ff'a : (ap _ (adj Hf _ ))⁻¹
|
≈ retrfa ⬝ ff'a : (ap _ (adj f _ ))⁻¹
|
||||||
... ≈ ap (f ∘ invf) ff'a ⬝ retrf'a : !concat_A1p⁻¹
|
... ≈ ap (f ∘ invf) ff'a ⬝ retrf'a : !concat_A1p⁻¹
|
||||||
... ≈ ap f (ap invf ff'a) ⬝ retr Hf (f' a) : {ap_compose invf f _},
|
... ≈ ap f (ap invf ff'a) ⬝ retr f (f' a) : {ap_compose invf f _},
|
||||||
have eq2 : _ ≈ _,
|
have eq2 : _ ≈ _,
|
||||||
from calc retrf'a
|
from calc retrf'a
|
||||||
≈ (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : moveL_Vp _ _ _ (eq1⁻¹)
|
≈ (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : moveL_Vp _ _ _ (eq1⁻¹)
|
||||||
|
@ -117,63 +118,63 @@ namespace IsEquiv
|
||||||
... ≈ (Heq (invf (f' a)) ⬝ (ap f' (ap invf ff'a))⁻¹) ⬝ ap f' secta : {!ap_V}
|
... ≈ (Heq (invf (f' a)) ⬝ (ap f' (ap invf ff'a))⁻¹) ⬝ ap f' secta : {!ap_V}
|
||||||
... ≈ Heq (invf (f' a)) ⬝ ((ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta) : !concat_pp_p,
|
... ≈ Heq (invf (f' a)) ⬝ ((ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta) : !concat_pp_p,
|
||||||
have eq3 : _ ≈ _,
|
have eq3 : _ ≈ _,
|
||||||
from calc (Heq (invf (f' a)))⁻¹ ⬝ retr Hf (f' a)
|
from calc (Heq (invf (f' a)))⁻¹ ⬝ retr f (f' a)
|
||||||
≈ (ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta : moveR_Vp _ _ _ eq2
|
≈ (ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta : moveR_Vp _ _ _ eq2
|
||||||
... ≈ (ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : {!ap_V⁻¹}
|
... ≈ (ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : {!ap_V⁻¹}
|
||||||
... ≈ ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : !ap_pp⁻¹,
|
... ≈ ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : !ap_pp⁻¹,
|
||||||
eq3) in
|
eq3) in
|
||||||
IsEquiv_mk (inv Hf) sect' retr' adj'
|
IsEquiv_mk (inv f) sect' retr' adj'
|
||||||
end IsEquiv
|
end IsEquiv
|
||||||
|
|
||||||
namespace IsEquiv
|
namespace IsEquiv
|
||||||
|
|
||||||
variables {A B : Type} (f : A → B) (g : B → A)
|
variables {A B : Type} (f : A → B) (g : B → A)
|
||||||
(retr : Sect g f) (sect : Sect f g)
|
(ret : Sect g f) (sec : Sect f g)
|
||||||
|
|
||||||
context
|
context
|
||||||
set_option unifier.max_steps 30000
|
set_option unifier.max_steps 30000
|
||||||
--To construct an equivalence it suffices to state the proof that the inverse is a quasi-inverse.
|
--To construct an equivalence it suffices to state the proof that the inverse is a quasi-inverse.
|
||||||
definition adjointify : IsEquiv f :=
|
definition adjointify : IsEquiv f :=
|
||||||
let sect' := (λx, ap g (ap f ((sect x)⁻¹)) ⬝ ap g (retr (f x)) ⬝ sect x) in
|
let sect' := (λx, ap g (ap f (inverse (sec x))) ⬝ ap g (ret (f x)) ⬝ sec x) in
|
||||||
let adj' := (λ (a : A),
|
let adj' := (λ (a : A),
|
||||||
let fgretrfa := ap f (ap g (retr (f a))) in
|
let fgretrfa := ap f (ap g (ret (f a))) in
|
||||||
let fgfinvsect := ap f (ap g (ap f ((sect a)⁻¹))) in
|
let fgfinvsect := ap f (ap g (ap f ((sec a)⁻¹))) in
|
||||||
let fgfa := f (g (f a)) in
|
let fgfa := f (g (f a)) in
|
||||||
let retrfa := retr (f a) in
|
let retrfa := ret (f a) in
|
||||||
have eq1 : ap f (sect a) ≈ _,
|
have eq1 : ap f (sec a) ≈ _,
|
||||||
from calc ap f (sect a)
|
from calc ap f (sec a)
|
||||||
≈ idp ⬝ ap f (sect a) : !concat_1p⁻¹
|
≈ idp ⬝ ap f (sec a) : !concat_1p⁻¹
|
||||||
... ≈ (retr (f a) ⬝ (retr (f a)⁻¹)) ⬝ ap f (sect a) : {!concat_pV⁻¹}
|
... ≈ (ret (f a) ⬝ (ret (f a)⁻¹)) ⬝ ap f (sec a) : {!concat_pV⁻¹}
|
||||||
... ≈ ((retr (fgfa))⁻¹ ⬝ ap (f ∘ g) (retr (f a))) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
|
... ≈ ((ret (fgfa))⁻¹ ⬝ ap (f ∘ g) (ret (f a))) ⬝ ap f (sec a) : {!concat_pA1⁻¹}
|
||||||
... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
|
... ≈ ((ret (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sec a) : {ap_compose g f _}
|
||||||
... ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_pp_p,
|
... ≈ (ret (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)) : !concat_pp_p,
|
||||||
have eq2 : ap f (sect a) ⬝ idp ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)),
|
have eq2 : ap f (sec a) ⬝ idp ≈ (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)),
|
||||||
from !concat_p1 ▹ eq1,
|
from !concat_p1 ⬝ eq1,
|
||||||
have eq3 : idp ≈ _,
|
have eq3 : idp ≈ _,
|
||||||
from calc idp
|
from calc idp
|
||||||
≈ (ap f (sect a))⁻¹ ⬝ ((retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a))) : moveL_Vp _ _ _ eq2
|
≈ (ap f (sec a))⁻¹ ⬝ ((ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a))) : moveL_Vp _ _ _ eq2
|
||||||
... ≈ (ap f (sect a)⁻¹ ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_p_pp
|
... ≈ (ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : !concat_p_pp
|
||||||
... ≈ (ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : {!ap_V⁻¹}
|
... ≈ (ap f ((sec a)⁻¹) ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : {!ap_V⁻¹}
|
||||||
... ≈ ((ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ fgretrfa) ⬝ ap f (sect a) : !concat_p_pp
|
... ≈ ((ap f ((sec a)⁻¹) ⬝ (ret fgfa)⁻¹) ⬝ fgretrfa) ⬝ ap f (sec a) : !concat_p_pp
|
||||||
... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sect a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sect a) : {!concat_pA1⁻¹}
|
... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sec a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sec a) : {!concat_pA1⁻¹}
|
||||||
... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _}
|
... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sec a) : {ap_compose g f _}
|
||||||
... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sect a) : {!concat_p_pp⁻¹}
|
... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sec a) : {!concat_p_pp⁻¹}
|
||||||
... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a) : {!ap_pp⁻¹}
|
... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ ap f (sec a) : {!ap_pp⁻¹}
|
||||||
... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a)) : !concat_p_pp⁻¹
|
... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ ap f (sec a)) : !concat_p_pp⁻¹
|
||||||
... ≈ retrfa⁻¹ ⬝ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a) : {!ap_pp⁻¹},
|
... ≈ retrfa⁻¹ ⬝ ap f ((ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ sec a) : {!ap_pp⁻¹},
|
||||||
have eq4 : retr (f a) ≈ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a),
|
have eq4 : ret (f a) ≈ ap f ((ap g (ap f ((sec a)⁻¹)) ⬝ ap g (ret (f a))) ⬝ sec a),
|
||||||
from moveR_M1 _ _ eq3,
|
from moveR_M1 _ _ eq3,
|
||||||
eq4) in
|
eq4) in
|
||||||
IsEquiv_mk g retr sect' adj'
|
IsEquiv_mk g ret sect' adj'
|
||||||
end
|
end
|
||||||
end IsEquiv
|
end IsEquiv
|
||||||
|
|
||||||
namespace IsEquiv
|
namespace IsEquiv
|
||||||
variables {A B: Type} {f : A → B} (Hf : IsEquiv f)
|
variables {A B: Type} {f : A → B}
|
||||||
|
|
||||||
--The inverse of an equivalence is, again, an equivalence.
|
--The inverse of an equivalence is, again, an equivalence.
|
||||||
definition inv_closed : (IsEquiv (inv Hf)) :=
|
definition inv_closed (Hf : IsEquiv f) : (IsEquiv (inv f)) :=
|
||||||
adjointify (inv Hf) f (sect Hf) (retr Hf)
|
adjointify (inv f) f (sect f) (retr f)
|
||||||
|
|
||||||
end IsEquiv
|
end IsEquiv
|
||||||
|
|
||||||
|
@ -181,10 +182,10 @@ namespace IsEquiv
|
||||||
variables {A B C : Type} {f : A → B} {g : B → C} {f' : A → B}
|
variables {A B C : Type} {f : A → B} {g : B → C} {f' : A → B}
|
||||||
|
|
||||||
definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) :=
|
definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) :=
|
||||||
homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr Hf b))
|
homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr f b))
|
||||||
|
|
||||||
definition cancel_L (Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv f) :=
|
definition cancel_L (Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv f) :=
|
||||||
homotopic (comp_closed Hgf (inv_closed Hg)) (λa, sect Hg (f a))
|
homotopic (comp_closed Hgf (inv_closed Hg)) (λa, sect g (f a))
|
||||||
|
|
||||||
--Transporting is an equivalence
|
--Transporting is an equivalence
|
||||||
definition transport [instance] (P : A → Type) {x y : A} (p : x ≈ y) : (IsEquiv (transport P p)) :=
|
definition transport [instance] (P : A → Type) {x y : A} (p : x ≈ y) : (IsEquiv (transport P p)) :=
|
||||||
|
@ -192,22 +193,22 @@ namespace IsEquiv
|
||||||
|
|
||||||
--Rewrite rules
|
--Rewrite rules
|
||||||
section
|
section
|
||||||
variables {Hf : IsEquiv f}
|
variables (Hf : IsEquiv f)
|
||||||
|
|
||||||
definition moveR_M {x : A} {y : B} (p : x ≈ (inv Hf) y) : (f x ≈ y) :=
|
definition moveR_M (Hf : IsEquiv f) {x : A} {y : B} (p : x ≈ (inv f) y) : (f x ≈ y) :=
|
||||||
(ap f p) ⬝ (retr Hf y)
|
(ap f p) ⬝ (retr f y)
|
||||||
|
|
||||||
definition moveL_M {x : A} {y : B} (p : (inv Hf) y ≈ x) : (y ≈ f x) :=
|
definition moveL_M (Hf : IsEquiv f) {x : A} {y : B} (p : (inv f) y ≈ x) : (y ≈ f x) :=
|
||||||
(moveR_M (p⁻¹))⁻¹
|
(moveR_M Hf (p⁻¹))⁻¹
|
||||||
|
|
||||||
definition moveR_V {x : B} {y : A} (p : x ≈ f y) : (inv Hf) x ≈ y :=
|
definition moveR_V (Hf : IsEquiv f) {x : B} {y : A} (p : x ≈ f y) : (inv f) x ≈ y :=
|
||||||
ap (inv Hf) p ⬝ sect Hf y
|
ap (inv f) p ⬝ sect f y
|
||||||
|
|
||||||
definition moveL_V {x : B} {y : A} (p : f y ≈ x) : y ≈ (inv Hf) x :=
|
definition moveL_V (Hf : IsEquiv f) {x : B} {y : A} (p : f y ≈ x) : y ≈ (inv f) x :=
|
||||||
(moveR_V (p⁻¹))⁻¹
|
(moveR_V Hf (p⁻¹))⁻¹
|
||||||
|
|
||||||
definition contr (HA: Contr A) : (Contr B) :=
|
definition contr (Hf : IsEquiv f) (HA: Contr A) : (Contr B) :=
|
||||||
Contr.Contr_mk (f (center HA)) (λb, moveR_M (contr HA (inv Hf b)))
|
Contr.Contr_mk (f (center HA)) (λb, moveR_M Hf (contr HA (inv f b)))
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -221,24 +222,28 @@ namespace IsEquiv
|
||||||
|
|
||||||
definition inv_precomp (C D : Type) (Ceq : IsEquiv (precomp C))
|
definition inv_precomp (C D : Type) (Ceq : IsEquiv (precomp C))
|
||||||
(Deq : IsEquiv (@precomp A B f D)) (k : C → D) (h : A → C) :
|
(Deq : IsEquiv (@precomp A B f D)) (k : C → D) (h : A → C) :
|
||||||
k ∘ (inv Ceq) h ≈ (inv Deq) (k ∘ h) :=
|
k ∘ (inv (precomp C)) h ≈ (inv (precomp D)) (k ∘ h) :=
|
||||||
have eq1 : (inv Deq) (k ∘ h) ≈ k ∘ ((inv Ceq) h),
|
let invD := inv (precomp D) in
|
||||||
from calc (inv Deq) (k ∘ h) ≈ (inv Deq) (k ∘ (precomp C ((inv Ceq) h))) : retr Ceq h
|
let invC := inv (precomp C) in
|
||||||
... ≈ k ∘ ((inv Ceq) h) : !sect,
|
have eq1 : invD (k ∘ h) ≈ k ∘ (invC h),
|
||||||
|
from calc invD (k ∘ h) ≈ invD (k ∘ (precomp C (invC h))) : retr (precomp C) h
|
||||||
|
... ≈ k ∘ (invC h) : !sect,
|
||||||
eq1⁻¹
|
eq1⁻¹
|
||||||
|
|
||||||
definition isequiv_precompose (Aeq : IsEquiv (@precomp A B f A))
|
definition isequiv_precompose (Aeq : IsEquiv (@precomp A B f A))
|
||||||
(Beq : IsEquiv (@precomp A B f B)) : (IsEquiv f) :=
|
(Beq : IsEquiv (@precomp A B f B)) : (IsEquiv f) :=
|
||||||
let sect' : Sect ((inv Aeq) id) f := (λx,
|
let invA := inv (precomp A) in
|
||||||
calc f (inv Aeq id x) ≈ (f ∘ (inv Aeq) id) x : idp
|
let invB := inv (precomp B) in
|
||||||
... ≈ (inv Beq) (f ∘ id) x : apD10 (!inv_precomp)
|
let sect' : Sect (invA id) f := (λx,
|
||||||
... ≈ (inv Beq) (@precomp A B f B id) x : idp
|
calc f (invA id x) ≈ (f ∘ invA id) x : idp
|
||||||
... ≈ x : apD10 (sect Beq id))
|
... ≈ invB (f ∘ id) x : apD10 (!inv_precomp)
|
||||||
|
... ≈ invB (@precomp A B f B id) x : idp
|
||||||
|
... ≈ x : apD10 (sect (precomp B) id))
|
||||||
in
|
in
|
||||||
let retr' : Sect f ((inv Aeq) id) := (λx,
|
let retr' : Sect f (invA id) := (λx,
|
||||||
calc inv Aeq id (f x) ≈ @precomp A B f A ((inv Aeq) id) x : idp
|
calc invA id (f x) ≈ @precomp A B f A (invA id) x : idp
|
||||||
... ≈ x : apD10 (retr Aeq id)) in
|
... ≈ x : apD10 (retr (precomp A) id)) in
|
||||||
adjointify f ((inv Aeq) id) sect' retr'
|
adjointify f (invA id) sect' retr'
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -247,6 +252,8 @@ end IsEquiv
|
||||||
namespace Equiv
|
namespace Equiv
|
||||||
variables {A B C : Type} (eqf : A ≃ B)
|
variables {A B C : Type} (eqf : A ≃ B)
|
||||||
|
|
||||||
|
definition f : A → B := equiv_fun eqf
|
||||||
|
|
||||||
definition id : A ≃ A := Equiv_mk id IsEquiv.id_closed
|
definition id : A ≃ A := Equiv_mk id IsEquiv.id_closed
|
||||||
|
|
||||||
theorem compose (eqg: B ≃ C) : A ≃ C :=
|
theorem compose (eqg: B ≃ C) : A ≃ C :=
|
||||||
|
@ -257,7 +264,8 @@ namespace Equiv
|
||||||
Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq)
|
Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq)
|
||||||
|
|
||||||
theorem inv_closed : B ≃ A :=
|
theorem inv_closed : B ≃ A :=
|
||||||
Equiv_mk (IsEquiv.inv (equiv_isequiv eqf)) (IsEquiv.inv_closed (equiv_isequiv eqf))
|
Equiv_mk (@IsEquiv.inv _ _ (equiv_fun eqf) (equiv_isequiv eqf))
|
||||||
|
(IsEquiv.inv_closed (equiv_isequiv eqf))
|
||||||
|
|
||||||
theorem cancel_L {f : A → B} {g : B → C}
|
theorem cancel_L {f : A → B} {g : B → C}
|
||||||
(Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : B ≃ C :=
|
(Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : B ≃ C :=
|
||||||
|
|
Loading…
Reference in a new issue