test(tests/lean/run): add test/example
add test/example that defines count_vars using tactics and recursors.
see #662 for original definition, and e3a0e62859
for the fix that
allows us to use recursive equations.
The recursive equations are compiled into recursors.
This commit is contained in:
parent
f3d50963ce
commit
2663c9ab9f
1 changed files with 55 additions and 0 deletions
55
tests/lean/run/662b.lean
Normal file
55
tests/lean/run/662b.lean
Normal file
|
@ -0,0 +1,55 @@
|
|||
open nat
|
||||
|
||||
inductive type : Type :=
|
||||
| Nat : type
|
||||
| Func : type → type → type
|
||||
|
||||
open type
|
||||
|
||||
section var
|
||||
variable {var : type → Type}
|
||||
|
||||
inductive term : type → Type :=
|
||||
| Var : ∀ {t}, var t → term t
|
||||
| Const : nat → term Nat
|
||||
| Plus : term Nat → term Nat → term Nat
|
||||
| Abs : ∀ {dom ran}, (var dom → term ran) → term (Func dom ran)
|
||||
| App : ∀ {dom ran}, term (Func dom ran) → term dom → term ran
|
||||
| Let : ∀ {t1 t2}, term t1 → (var t1 → term t2) → term t2
|
||||
end var
|
||||
|
||||
open term
|
||||
|
||||
definition Term t := Π (var : type → Type), @term var t
|
||||
open unit
|
||||
|
||||
-- Define count_vars using tactics
|
||||
definition count_vars1 {t : type} (T : @term (λ x, unit) t) : nat :=
|
||||
begin
|
||||
induction T,
|
||||
{exact 1},
|
||||
{exact 0},
|
||||
{exact v_0 + v_1},
|
||||
{exact v_0 star},
|
||||
{exact v_0 + v_1},
|
||||
{exact v_0 + v_1 star},
|
||||
end
|
||||
|
||||
-- Define count_vars using recursor
|
||||
definition count_vars2 {t : type} (T : @term (λ x, unit) t) : nat :=
|
||||
term.rec_on T
|
||||
(λ t u, 1)
|
||||
(λ n, 0)
|
||||
(λ T₁ T₂ n₁ n₂, n₁ + n₂)
|
||||
(λ d r f n, n star)
|
||||
(λ d r T₁ T₂ n₁ n₂, n₁ + n₂)
|
||||
(λ t₁ t₂ T₁ T₂ n₁ n₂, n₁ + n₂ star)
|
||||
|
||||
definition var (t : type) : @term (λ x, unit) t :=
|
||||
Var star
|
||||
|
||||
example : count_vars1 (App (App (var (Func Nat (Func Nat Nat))) (var Nat)) (var Nat)) = 3 :=
|
||||
rfl
|
||||
|
||||
example : count_vars2 (App (App (var (Func Nat (Func Nat Nat))) (var Nat)) (var Nat)) = 3 :=
|
||||
rfl
|
Loading…
Reference in a new issue