feat(library/hott) add theorem: if f is an equivalence, so is ap f
This commit is contained in:
parent
b3ad8c704a
commit
2712b9b18f
1 changed files with 16 additions and 0 deletions
|
@ -210,6 +210,22 @@ namespace IsEquiv
|
|||
definition contr (Hf : IsEquiv f) (HA: Contr A) : (Contr B) :=
|
||||
Contr.Contr_mk (f (center HA)) (λb, moveR_M Hf (contr HA (inv f b)))
|
||||
|
||||
definition ap (Hf : IsEquiv f) (x y : A) : IsEquiv (@ap A B f x y) :=
|
||||
adjointify (ap f)
|
||||
(λq, (inverse (sect f x)) ⬝ ap (f⁻¹) q ⬝ sect f y) --sorry sorry
|
||||
(λq, ap_pp f _ _
|
||||
⬝ whiskerR (ap_pp f _ _) _
|
||||
⬝ ((ap_V f _ ⬝ inverse2 (inverse (adj f _)))
|
||||
◾ (inverse (ap_compose (f⁻¹) f _))
|
||||
◾ (adj f _)⁻¹)
|
||||
⬝ concat_pA1_p (retr f) _ _
|
||||
⬝ whiskerR (concat_Vp _) _
|
||||
⬝ concat_1p _)
|
||||
(λp, whiskerR (whiskerL _ (inverse (ap_compose f (f⁻¹) _))) _
|
||||
⬝ concat_pA1_p (sect f) _ _
|
||||
⬝ whiskerR (concat_Vp _) _
|
||||
⬝ concat_1p _)
|
||||
|
||||
end
|
||||
|
||||
end IsEquiv
|
||||
|
|
Loading…
Reference in a new issue