feat(library/unifier): add option 'unifier.conservative', use option by default in the calc_assistant
This commit is contained in:
parent
7149c49553
commit
2717adde94
10 changed files with 62 additions and 27 deletions
|
@ -105,7 +105,7 @@ namespace morphism
|
||||||
= retraction_of f ∘ retraction_of g ∘ g ∘ f : assoc
|
= retraction_of f ∘ retraction_of g ∘ g ∘ f : assoc
|
||||||
... = retraction_of f ∘ ((retraction_of g ∘ g) ∘ f) : aux
|
... = retraction_of f ∘ ((retraction_of g ∘ g) ∘ f) : aux
|
||||||
... = retraction_of f ∘ id ∘ f : {retraction_compose g}
|
... = retraction_of f ∘ id ∘ f : {retraction_compose g}
|
||||||
... = retraction_of f ∘ f : id_left f
|
... = retraction_of f ∘ f : {id_left f}
|
||||||
... = id : retraction_compose f)
|
... = id : retraction_compose f)
|
||||||
|
|
||||||
theorem composition_is_retraction [instance] (Hf : is_retraction f) (Hg : is_retraction g)
|
theorem composition_is_retraction [instance] (Hf : is_retraction f) (Hg : is_retraction g)
|
||||||
|
@ -118,7 +118,7 @@ namespace morphism
|
||||||
= g ∘ f ∘ section_of f ∘ section_of g : assoc
|
= g ∘ f ∘ section_of f ∘ section_of g : assoc
|
||||||
... = g ∘ (f ∘ section_of f) ∘ section_of g : aux
|
... = g ∘ (f ∘ section_of f) ∘ section_of g : aux
|
||||||
... = g ∘ id ∘ section_of g : compose_section f
|
... = g ∘ id ∘ section_of g : compose_section f
|
||||||
... = g ∘ section_of g : id_left (section_of g)
|
... = g ∘ section_of g : {id_left (section_of g)}
|
||||||
... = id : compose_section)
|
... = id : compose_section)
|
||||||
|
|
||||||
theorem composition_is_inverse [instance] (Hf : is_iso f) (Hg : is_iso g) : is_iso (g ∘ f) :=
|
theorem composition_is_inverse [instance] (Hf : is_iso f) (Hg : is_iso g) : is_iso (g ∘ f) :=
|
||||||
|
|
|
@ -102,7 +102,7 @@ namespace is_equiv
|
||||||
have eq1 : ap f (sec a) = _,
|
have eq1 : ap f (sec a) = _,
|
||||||
from calc ap f (sec a)
|
from calc ap f (sec a)
|
||||||
= idp ⬝ ap f (sec a) : !concat_1p⁻¹
|
= idp ⬝ ap f (sec a) : !concat_1p⁻¹
|
||||||
... = (ret (f a) ⬝ (ret (f a)⁻¹)) ⬝ ap f (sec a) : concat_pV
|
... = (ret (f a) ⬝ (ret (f a)⁻¹)) ⬝ ap f (sec a) : {!concat_pV⁻¹}
|
||||||
... = ((ret (fgfa))⁻¹ ⬝ ap (f ∘ g) (ret (f a))) ⬝ ap f (sec a) : {!concat_pA1⁻¹}
|
... = ((ret (fgfa))⁻¹ ⬝ ap (f ∘ g) (ret (f a))) ⬝ ap f (sec a) : {!concat_pA1⁻¹}
|
||||||
... = ((ret (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sec a) : {ap_compose g f _}
|
... = ((ret (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sec a) : {ap_compose g f _}
|
||||||
... = (ret (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)) : !concat_pp_p,
|
... = (ret (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)) : !concat_pp_p,
|
||||||
|
|
|
@ -268,7 +268,7 @@ namespace sigma
|
||||||
: ap (g a⁻¹) !transport_compose
|
: ap (g a⁻¹) !transport_compose
|
||||||
... = g a⁻¹ (transport B' (ap f (sect f a)) (transport B' (ap f (sect f a)⁻¹) (g a b)))
|
... = g a⁻¹ (transport B' (ap f (sect f a)) (transport B' (ap f (sect f a)⁻¹) (g a b)))
|
||||||
: ap (λ x, g a⁻¹ (transport B' (ap f (sect f a)) (transport B' (x⁻¹) (g a b)))) (adj f a)
|
: ap (λ x, g a⁻¹ (transport B' (ap f (sect f a)) (transport B' (x⁻¹) (g a b)))) (adj f a)
|
||||||
... = g a⁻¹ (g a b) : transport_pV
|
... = g a⁻¹ (g a b) : {!transport_pV}
|
||||||
... = b : sect (g a) b
|
... = b : sect (g a) b
|
||||||
end
|
end
|
||||||
-- -- "rewrite ap_transport"
|
-- -- "rewrite ap_transport"
|
||||||
|
|
|
@ -246,7 +246,7 @@ section
|
||||||
dvd.intro
|
dvd.intro
|
||||||
(calc
|
(calc
|
||||||
a * -c = -(a * c) : {!neg_mul_eq_mul_neg⁻¹}
|
a * -c = -(a * c) : {!neg_mul_eq_mul_neg⁻¹}
|
||||||
... = -(-b) : H'
|
... = -(-b) : {H'}
|
||||||
... = b : neg_neg)))
|
... = b : neg_neg)))
|
||||||
(assume H : a | b,
|
(assume H : a | b,
|
||||||
dvd.elim H
|
dvd.elim H
|
||||||
|
@ -254,7 +254,7 @@ section
|
||||||
dvd.intro
|
dvd.intro
|
||||||
(calc
|
(calc
|
||||||
a * -c = -(a * c) : {!neg_mul_eq_mul_neg⁻¹}
|
a * -c = -(a * c) : {!neg_mul_eq_mul_neg⁻¹}
|
||||||
... = -b : H')))
|
... = -b : {H'})))
|
||||||
|
|
||||||
theorem neg_dvd_iff_dvd : -a | b ↔ a | b :=
|
theorem neg_dvd_iff_dvd : -a | b ↔ a | b :=
|
||||||
iff.intro
|
iff.intro
|
||||||
|
|
|
@ -70,12 +70,12 @@ namespace fin
|
||||||
to_nat_of_nat (p+1) (n+1) h := calc
|
to_nat_of_nat (p+1) (n+1) h := calc
|
||||||
to_nat (of_nat (p+1) (n+1) h)
|
to_nat (of_nat (p+1) (n+1) h)
|
||||||
= succ (to_nat (of_nat p n _)) : rfl
|
= succ (to_nat (of_nat p n _)) : rfl
|
||||||
... = succ p : to_nat_of_nat p n _
|
... = succ p : {to_nat_of_nat p n _}
|
||||||
|
|
||||||
theorem of_nat_to_nat : ∀ {n : nat} (f : fin n) (h : to_nat f < n), of_nat (to_nat f) n h = f,
|
theorem of_nat_to_nat : ∀ {n : nat} (f : fin n) (h : to_nat f < n), of_nat (to_nat f) n h = f,
|
||||||
of_nat_to_nat (fz n) h := rfl,
|
of_nat_to_nat (fz n) h := rfl,
|
||||||
of_nat_to_nat (@fs n f) h := calc
|
of_nat_to_nat (@fs n f) h := calc
|
||||||
of_nat (to_nat (fs f)) (succ n) h = fs (of_nat (to_nat f) n _) : rfl
|
of_nat (to_nat (fs f)) (succ n) h = fs (of_nat (to_nat f) n _) : rfl
|
||||||
... = fs f : of_nat_to_nat f _
|
... = fs f : {of_nat_to_nat f _}
|
||||||
|
|
||||||
end fin
|
end fin
|
||||||
|
|
|
@ -43,7 +43,7 @@ inductive int : Type :=
|
||||||
|
|
||||||
notation `ℤ` := int
|
notation `ℤ` := int
|
||||||
coercion [persistent] int.of_nat
|
coercion [persistent] int.of_nat
|
||||||
definition int.of_num [coercion] (n : num) : ℤ := int.of_nat (nat.of_num n)
|
definition int.of_num [coercion] [reducible] (n : num) : ℤ := int.of_nat (nat.of_num n)
|
||||||
|
|
||||||
namespace int
|
namespace int
|
||||||
|
|
||||||
|
@ -506,7 +506,7 @@ cases_on a
|
||||||
pmul (repr (neg_succ_of_nat m')) (repr n) =
|
pmul (repr (neg_succ_of_nat m')) (repr n) =
|
||||||
(0 * n + succ m' * 0, 0 * 0 + succ m' * n) : rfl
|
(0 * n + succ m' * 0, 0 * 0 + succ m' * n) : rfl
|
||||||
... = (0 + succ m' * 0, 0 * 0 + succ m' * n) : zero_mul
|
... = (0 + succ m' * 0, 0 * 0 + succ m' * n) : zero_mul
|
||||||
... = (0 + succ m' * 0, succ m' * n) : nat.zero_add
|
... = (0 + succ m' * 0, succ m' * n) : {!nat.zero_add}
|
||||||
... = repr (mul (neg_succ_of_nat m') n) : repr_neg_of_nat)⁻¹)
|
... = repr (mul (neg_succ_of_nat m') n) : repr_neg_of_nat)⁻¹)
|
||||||
(take n',
|
(take n',
|
||||||
(calc
|
(calc
|
||||||
|
|
|
@ -45,7 +45,7 @@ theorem add_div_left {x z : ℕ} (H : z > 0) : (x + z) div z = succ (x div z) :=
|
||||||
calc
|
calc
|
||||||
(x + z) div z = if 0 < z ∧ z ≤ x + z then (x + z - z) div z + 1 else 0 : !divide_def
|
(x + z) div z = if 0 < z ∧ z ≤ x + z then (x + z - z) div z + 1 else 0 : !divide_def
|
||||||
... = (x + z - z) div z + 1 : if_pos (and.intro H (le_add_left z x))
|
... = (x + z - z) div z + 1 : if_pos (and.intro H (le_add_left z x))
|
||||||
... = succ (x div z) : add_sub_cancel
|
... = succ (x div z) : {!add_sub_cancel}
|
||||||
|
|
||||||
theorem add_div_right {x z : ℕ} (H : x > 0) : (x + z) div x = succ (z div x) :=
|
theorem add_div_right {x z : ℕ} (H : x > 0) : (x + z) div x = succ (z div x) :=
|
||||||
!add.comm ▸ add_div_left H
|
!add.comm ▸ add_div_left H
|
||||||
|
|
|
@ -154,7 +154,7 @@ constraint mk_calc_proof_cnstr(environment const & env, options const & opts,
|
||||||
fn(e);
|
fn(e);
|
||||||
}
|
}
|
||||||
|
|
||||||
auto try_alternative = [&](expr const & e, expr const & e_type, constraint_seq fcs) {
|
auto try_alternative = [&](expr const & e, expr const & e_type, constraint_seq fcs, bool conservative) {
|
||||||
justification new_j = mk_type_mismatch_jst(e, e_type, meta_type);
|
justification new_j = mk_type_mismatch_jst(e, e_type, meta_type);
|
||||||
if (!tc->is_def_eq(e_type, meta_type, new_j, fcs))
|
if (!tc->is_def_eq(e_type, meta_type, new_j, fcs))
|
||||||
throw unifier_exception(new_j, s);
|
throw unifier_exception(new_j, s);
|
||||||
|
@ -166,8 +166,9 @@ constraint mk_calc_proof_cnstr(environment const & env, options const & opts,
|
||||||
cs_buffer.push_back(mk_eq_cnstr(meta, e, j, relax));
|
cs_buffer.push_back(mk_eq_cnstr(meta, e, j, relax));
|
||||||
|
|
||||||
unifier_config new_cfg(cfg);
|
unifier_config new_cfg(cfg);
|
||||||
new_cfg.m_discard = false;
|
new_cfg.m_discard = false;
|
||||||
unify_result_seq seq = unify(env, cs_buffer.size(), cs_buffer.data(), ngen, substitution(), new_cfg);
|
new_cfg.m_conservative = conservative;
|
||||||
|
unify_result_seq seq = unify(env, cs_buffer.size(), cs_buffer.data(), ngen, substitution(), new_cfg);
|
||||||
auto p = seq.pull();
|
auto p = seq.pull();
|
||||||
lean_assert(p);
|
lean_assert(p);
|
||||||
substitution new_s = p->first.first;
|
substitution new_s = p->first.first;
|
||||||
|
@ -183,30 +184,35 @@ constraint mk_calc_proof_cnstr(environment const & env, options const & opts,
|
||||||
};
|
};
|
||||||
|
|
||||||
if (!get_elaborator_calc_assistant(opts)) {
|
if (!get_elaborator_calc_assistant(opts)) {
|
||||||
return try_alternative(e, e_type, new_cs);
|
bool conservative = false;
|
||||||
|
return try_alternative(e, e_type, new_cs, conservative);
|
||||||
} else {
|
} else {
|
||||||
std::unique_ptr<throwable> saved_ex;
|
std::unique_ptr<throwable> saved_ex;
|
||||||
try {
|
try {
|
||||||
return try_alternative(e, e_type, new_cs);
|
bool conservative = false;
|
||||||
|
return try_alternative(e, e_type, new_cs, conservative);
|
||||||
} catch (exception & ex) {
|
} catch (exception & ex) {
|
||||||
saved_ex.reset(ex.clone());
|
saved_ex.reset(ex.clone());
|
||||||
}
|
}
|
||||||
|
|
||||||
constraint_seq symm_cs = new_cs;
|
constraint_seq symm_cs = new_cs;
|
||||||
auto symm = apply_symmetry(env, ctx, ngen, tc, e, e_type, symm_cs, g);
|
auto symm = apply_symmetry(env, ctx, ngen, tc, e, e_type, symm_cs, g);
|
||||||
if (symm) {
|
if (symm) {
|
||||||
try { return try_alternative(symm->first, symm->second, symm_cs); } catch (exception &) {}
|
bool conservative = false;
|
||||||
|
try { return try_alternative(symm->first, symm->second, symm_cs, conservative); } catch (exception &) {}
|
||||||
}
|
}
|
||||||
|
|
||||||
constraint_seq subst_cs = new_cs;
|
constraint_seq subst_cs = new_cs;
|
||||||
if (auto subst = apply_subst(env, ctx, ngen, tc, e, e_type, meta_type, subst_cs, g)) {
|
if (auto subst = apply_subst(env, ctx, ngen, tc, e, e_type, meta_type, subst_cs, g)) {
|
||||||
try { return try_alternative(subst->first, subst->second, subst_cs); } catch (exception&) {}
|
bool conservative = true;
|
||||||
|
try { return try_alternative(subst->first, subst->second, subst_cs, conservative); } catch (exception&) {}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (symm) {
|
if (symm) {
|
||||||
constraint_seq subst_cs = symm_cs;
|
constraint_seq subst_cs = symm_cs;
|
||||||
|
bool conservative = true;
|
||||||
if (auto subst = apply_subst(env, ctx, ngen, tc, symm->first, symm->second, meta_type, subst_cs, g)) {
|
if (auto subst = apply_subst(env, ctx, ngen, tc, symm->first, symm->second, meta_type, subst_cs, g)) {
|
||||||
try { return try_alternative(subst->first, subst->second, subst_cs); } catch (exception&) {}
|
try { return try_alternative(subst->first, subst->second, subst_cs, conservative); } catch (exception&) {}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -45,10 +45,15 @@ Author: Leonardo de Moura
|
||||||
#define LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES false
|
#define LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES false
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#ifndef LEAN_DEFAULT_UNIFIER_CONSERVATIVE
|
||||||
|
#define LEAN_DEFAULT_UNIFIER_CONSERVATIVE false
|
||||||
|
#endif
|
||||||
|
|
||||||
namespace lean {
|
namespace lean {
|
||||||
static name * g_unifier_max_steps = nullptr;
|
static name * g_unifier_max_steps = nullptr;
|
||||||
static name * g_unifier_computation = nullptr;
|
static name * g_unifier_computation = nullptr;
|
||||||
static name * g_unifier_expensive_classes = nullptr;
|
static name * g_unifier_expensive_classes = nullptr;
|
||||||
|
static name * g_unifier_conservative = nullptr;
|
||||||
|
|
||||||
unsigned get_unifier_max_steps(options const & opts) {
|
unsigned get_unifier_max_steps(options const & opts) {
|
||||||
return opts.get_unsigned(*g_unifier_max_steps, LEAN_DEFAULT_UNIFIER_MAX_STEPS);
|
return opts.get_unsigned(*g_unifier_max_steps, LEAN_DEFAULT_UNIFIER_MAX_STEPS);
|
||||||
|
@ -62,12 +67,17 @@ bool get_unifier_expensive_classes(options const & opts) {
|
||||||
return opts.get_bool(*g_unifier_expensive_classes, LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES);
|
return opts.get_bool(*g_unifier_expensive_classes, LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool get_unifier_conservative(options const & opts) {
|
||||||
|
return opts.get_bool(*g_unifier_conservative, LEAN_DEFAULT_UNIFIER_CONSERVATIVE);
|
||||||
|
}
|
||||||
|
|
||||||
unifier_config::unifier_config(bool use_exceptions, bool discard):
|
unifier_config::unifier_config(bool use_exceptions, bool discard):
|
||||||
m_use_exceptions(use_exceptions),
|
m_use_exceptions(use_exceptions),
|
||||||
m_max_steps(LEAN_DEFAULT_UNIFIER_MAX_STEPS),
|
m_max_steps(LEAN_DEFAULT_UNIFIER_MAX_STEPS),
|
||||||
m_computation(LEAN_DEFAULT_UNIFIER_COMPUTATION),
|
m_computation(LEAN_DEFAULT_UNIFIER_COMPUTATION),
|
||||||
m_expensive_classes(LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES),
|
m_expensive_classes(LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES),
|
||||||
m_discard(discard) {
|
m_discard(discard),
|
||||||
|
m_conservative(LEAN_DEFAULT_UNIFIER_CONSERVATIVE) {
|
||||||
m_cheap = false;
|
m_cheap = false;
|
||||||
m_ignore_context_check = false;
|
m_ignore_context_check = false;
|
||||||
}
|
}
|
||||||
|
@ -77,7 +87,8 @@ unifier_config::unifier_config(options const & o, bool use_exceptions, bool disc
|
||||||
m_max_steps(get_unifier_max_steps(o)),
|
m_max_steps(get_unifier_max_steps(o)),
|
||||||
m_computation(get_unifier_computation(o)),
|
m_computation(get_unifier_computation(o)),
|
||||||
m_expensive_classes(get_unifier_expensive_classes(o)),
|
m_expensive_classes(get_unifier_expensive_classes(o)),
|
||||||
m_discard(discard) {
|
m_discard(discard),
|
||||||
|
m_conservative(get_unifier_conservative(o)) {
|
||||||
m_cheap = false;
|
m_cheap = false;
|
||||||
m_ignore_context_check = false;
|
m_ignore_context_check = false;
|
||||||
}
|
}
|
||||||
|
@ -419,6 +430,11 @@ struct unifier_fn {
|
||||||
m_tc[1] = m_tc[0];
|
m_tc[1] = m_tc[0];
|
||||||
m_flex_rigid_tc = m_tc[0];
|
m_flex_rigid_tc = m_tc[0];
|
||||||
m_config.m_computation = false;
|
m_config.m_computation = false;
|
||||||
|
} else if (m_config.m_conservative) {
|
||||||
|
m_tc[0] = mk_type_checker(env, m_ngen.mk_child(), false, OpaqueIfNotReducibleOn);
|
||||||
|
m_tc[1] = m_tc[0];
|
||||||
|
m_flex_rigid_tc = m_tc[0];
|
||||||
|
m_config.m_computation = false;
|
||||||
} else {
|
} else {
|
||||||
m_tc[0] = mk_type_checker(env, m_ngen.mk_child(), false);
|
m_tc[0] = mk_type_checker(env, m_ngen.mk_child(), false);
|
||||||
m_tc[1] = mk_type_checker(env, m_ngen.mk_child(), true);
|
m_tc[1] = mk_type_checker(env, m_ngen.mk_child(), true);
|
||||||
|
@ -1325,7 +1341,8 @@ struct unifier_fn {
|
||||||
|
|
||||||
justification a;
|
justification a;
|
||||||
bool relax = relax_main_opaque(c);
|
bool relax = relax_main_opaque(c);
|
||||||
if (!m_config.m_cheap && (m_config.m_computation || module::is_definition(m_env, d.get_name()) || is_reducible_on(m_env, d.get_name()))) {
|
if (!m_config.m_cheap && !m_config.m_conservative &&
|
||||||
|
(m_config.m_computation || module::is_definition(m_env, d.get_name()) || is_reducible_on(m_env, d.get_name()))) {
|
||||||
// add case_split for t =?= s
|
// add case_split for t =?= s
|
||||||
a = mk_assumption_justification(m_next_assumption_idx);
|
a = mk_assumption_justification(m_next_assumption_idx);
|
||||||
add_case_split(std::unique_ptr<case_split>(new delta_unfold_case_split(*this, j, c)));
|
add_case_split(std::unique_ptr<case_split>(new delta_unfold_case_split(*this, j, c)));
|
||||||
|
@ -1871,7 +1888,7 @@ struct unifier_fn {
|
||||||
*/
|
*/
|
||||||
bool use_flex_rigid_whnf_split(expr const & lhs, expr const & rhs) {
|
bool use_flex_rigid_whnf_split(expr const & lhs, expr const & rhs) {
|
||||||
lean_assert(is_meta(lhs));
|
lean_assert(is_meta(lhs));
|
||||||
if (m_config.m_cheap)
|
if (m_config.m_cheap || m_config.m_conservative)
|
||||||
return false;
|
return false;
|
||||||
if (m_config.m_computation)
|
if (m_config.m_computation)
|
||||||
return true; // if unifier.computation is true, we always consider the additional whnf split
|
return true; // if unifier.computation is true, we always consider the additional whnf split
|
||||||
|
@ -2514,12 +2531,15 @@ void initialize_unifier() {
|
||||||
g_unifier_max_steps = new name{"unifier", "max_steps"};
|
g_unifier_max_steps = new name{"unifier", "max_steps"};
|
||||||
g_unifier_computation = new name{"unifier", "computation"};
|
g_unifier_computation = new name{"unifier", "computation"};
|
||||||
g_unifier_expensive_classes = new name{"unifier", "expensive_classes"};
|
g_unifier_expensive_classes = new name{"unifier", "expensive_classes"};
|
||||||
|
g_unifier_conservative = new name{"unifier", "conservative"};
|
||||||
|
|
||||||
register_unsigned_option(*g_unifier_max_steps, LEAN_DEFAULT_UNIFIER_MAX_STEPS, "(unifier) maximum number of steps");
|
register_unsigned_option(*g_unifier_max_steps, LEAN_DEFAULT_UNIFIER_MAX_STEPS, "(unifier) maximum number of steps");
|
||||||
register_bool_option(*g_unifier_computation, LEAN_DEFAULT_UNIFIER_COMPUTATION,
|
register_bool_option(*g_unifier_computation, LEAN_DEFAULT_UNIFIER_COMPUTATION,
|
||||||
"(unifier) always case-split on reduction/computational steps when solving flex-rigid and delta-delta constraints");
|
"(unifier) always case-split on reduction/computational steps when solving flex-rigid and delta-delta constraints");
|
||||||
register_bool_option(*g_unifier_expensive_classes, LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES,
|
register_bool_option(*g_unifier_expensive_classes, LEAN_DEFAULT_UNIFIER_EXPENSIVE_CLASSES,
|
||||||
"(unifier) use \"full\" higher-order unification when solving class instances");
|
"(unifier) use \"full\" higher-order unification when solving class instances");
|
||||||
|
register_bool_option(*g_unifier_conservative, LEAN_DEFAULT_UNIFIER_CONSERVATIVE,
|
||||||
|
"(unifier) unfolds only constants marked as reducible, avoid expensive case-splits (it is faster but less complete)");
|
||||||
|
|
||||||
g_dont_care_cnstr = new constraint(mk_eq_cnstr(expr(), expr(), justification(), false));
|
g_dont_care_cnstr = new constraint(mk_eq_cnstr(expr(), expr(), justification(), false));
|
||||||
g_tmp_prefix = new name(name::mk_internal_unique_name());
|
g_tmp_prefix = new name(name::mk_internal_unique_name());
|
||||||
|
@ -2531,5 +2551,6 @@ void finalize_unifier() {
|
||||||
delete g_unifier_max_steps;
|
delete g_unifier_max_steps;
|
||||||
delete g_unifier_computation;
|
delete g_unifier_computation;
|
||||||
delete g_unifier_expensive_classes;
|
delete g_unifier_expensive_classes;
|
||||||
|
delete g_unifier_conservative;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -40,7 +40,15 @@ struct unifier_config {
|
||||||
// If m_discard is true, then constraints that cannot be solved are discarded (or incomplete methods are used)
|
// If m_discard is true, then constraints that cannot be solved are discarded (or incomplete methods are used)
|
||||||
// If m_discard is false, unify returns the set of constraints that could not be handled.
|
// If m_discard is false, unify returns the set of constraints that could not be handled.
|
||||||
bool m_discard;
|
bool m_discard;
|
||||||
|
// If m_conservative is true, then the following restrictions are imposed:
|
||||||
|
// - All constants that are not marked as reducible as treated as
|
||||||
|
// opaque.
|
||||||
|
// - Disables case-split on delta-delta constraints.
|
||||||
|
// - Disables reduction case-split on flex-rigid constraints.
|
||||||
|
// Default is m_conservative == false
|
||||||
|
bool m_conservative;
|
||||||
// If m_cheap is true, then expensive case-analysis is not performed (e.g., delta).
|
// If m_cheap is true, then expensive case-analysis is not performed (e.g., delta).
|
||||||
|
// It is more restrictive than m_conservative
|
||||||
// Default is m_cheap == false
|
// Default is m_cheap == false
|
||||||
bool m_cheap;
|
bool m_cheap;
|
||||||
// If m_ignore_context_check == true, then occurs-check is skipped.
|
// If m_ignore_context_check == true, then occurs-check is skipped.
|
||||||
|
|
Loading…
Reference in a new issue