feat(library/simplifier): bottom-up simplifier skeleton

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-18 02:47:11 -08:00
parent 40b7ed13c2
commit 27ab49ae9d
14 changed files with 504 additions and 21 deletions

View file

@ -4,10 +4,10 @@ infixl 50 == : heq
axiom heq_eq {A : TypeU} (a b : A) : a == b ↔ a = b
definition to_eq {A : TypeU} {a b : A} (H : a == b) : a = b
theorem to_eq {A : TypeU} {a b : A} (H : a == b) : a = b
:= (heq_eq a b) ◂ H
definition to_heq {A : TypeU} {a b : A} (H : a = b) : a == b
theorem to_heq {A : TypeU} {a b : A} (H : a = b) : a == b
:= (symm (heq_eq a b)) ◂ H
theorem hrefl {A : TypeU} (a : A) : a == a

View file

@ -173,8 +173,8 @@ theorem eqt_elim {a : Bool} (H : a = true) : a
theorem eqf_elim {a : Bool} (H : a = false) : ¬ a
:= not_intro (λ Ha : a, H ◂ Ha)
theorem congr1 {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (a : A) (H : f = g) : f a = g a
:= substp (fun h : (∀ x : A, B x), f a = h a) (refl (f a)) H
theorem congr1 {A B : TypeU} {f g : A → B} (a : A) (H : f = g) : f a = g a
:= substp (fun h : A → B, f a = h a) (refl (f a)) H
theorem congr2 {A B : TypeU} {a b : A} (f : A → B) (H : a = b) : f a = f b
:= substp (fun x : A, f a = f x) (refl (f a)) H

Binary file not shown.

Binary file not shown.

View file

@ -220,7 +220,10 @@ public:
};
unsigned free_var_range(expr const & e, metavar_env const & menv) {
return free_var_range_fn(some_menv(menv))(e);
if (closed(e))
return 0;
else
return free_var_range_fn(some_menv(menv))(e);
}
unsigned free_var_range(expr const & e) {
@ -346,7 +349,7 @@ public:
};
bool has_free_var(expr const & e, unsigned low, unsigned high, optional<metavar_env> const & menv) {
return high > low && has_free_var_in_range_fn(low, high, menv)(e);
return high > low && !closed(e) && has_free_var_in_range_fn(low, high, menv)(e);
}
bool has_free_var(expr const & e, unsigned low, unsigned high, metavar_env const & menv) { return has_free_var(e, low, high, some_menv(menv)); }
bool has_free_var(expr const & e, unsigned low, unsigned high) { return has_free_var(e, low, high, none_menv()); }
@ -366,7 +369,7 @@ bool has_free_var_ge(expr const & e, unsigned low, metavar_env const & menv) { r
bool has_free_var_ge(expr const & e, unsigned low) { return has_free_var(e, low, std::numeric_limits<unsigned>::max()); }
expr lower_free_vars(expr const & e, unsigned s, unsigned d, optional<metavar_env> const & DEBUG_CODE(menv)) {
if (d == 0)
if (d == 0 || closed(e))
return e;
lean_assert(s >= d);
lean_assert(!has_free_var(e, s-d, s, menv));
@ -397,7 +400,7 @@ context_entry lower_free_vars(context_entry const & e, unsigned s, unsigned d, m
}
expr lift_free_vars(expr const & e, unsigned s, unsigned d, optional<metavar_env> const & menv) {
if (d == 0)
if (d == 0 || closed(e))
return e;
return replace(e, [=](expr const & e, unsigned offset) -> expr {
if (is_var(e) && var_idx(e) >= s + offset) {

View file

@ -18,6 +18,16 @@ Author: Leonardo de Moura
#include "kernel/type_checker_justification.h"
namespace lean {
expr pi_body_at(expr const & pi, expr const & a) {
lean_assert(is_pi(pi));
if (closed(abst_body(pi)))
return abst_body(pi);
else if (closed(a))
return instantiate_with_closed(abst_body(pi), a);
else
return instantiate(abst_body(pi), a);
}
static name g_x_name("x");
/** \brief Auxiliary functional object used to implement infer_type. */
class type_checker::imp {
@ -225,12 +235,7 @@ class type_checker::imp {
auto mk_justification = [&](){ return mk_app_type_match_justification(ctx, e, i); };
if (!is_convertible(c_t, abst_domain(f_t), ctx, mk_justification))
throw app_type_mismatch_exception(env(), ctx, e, arg_types.size(), arg_types.data());
if (closed(abst_body(f_t)))
f_t = abst_body(f_t);
else if (closed(c))
f_t = instantiate_with_closed(abst_body(f_t), c);
else
f_t = instantiate(abst_body(f_t), c);
f_t = pi_body_at(f_t, c);
i++;
if (i == num)
return save_result(e, f_t, shared);
@ -426,6 +431,16 @@ public:
return is_bool(normalize(t, ctx, true));
}
expr ensure_pi(expr const & e, context const & ctx) {
set_ctx(ctx);
update_menv(none_menv());
try {
return check_pi(e, expr(), ctx);
} catch (exception &) {
throw exception("internal bug, expression is not a Pi");
}
}
void clear_cache() {
m_cache.clear();
m_normalizer.clear();
@ -474,6 +489,9 @@ bool type_checker::is_convertible(expr const & t1, expr const & t2, context cons
void type_checker::check_type(expr const & e, context const & ctx) {
m_ptr->check_type(e, ctx);
}
expr type_checker::ensure_pi(expr const & e, context const & ctx) {
return m_ptr->ensure_pi(e, ctx);
}
bool type_checker::is_proposition(expr const & e, context const & ctx, optional<metavar_env> const & menv) {
return m_ptr->is_proposition(e, ctx, menv);
}

View file

@ -14,6 +14,15 @@ Author: Leonardo de Moura
namespace lean {
class environment;
class normalizer;
/**
\brief Given pi == (Pi x : A, B x), return (B a)
\pre is_pi(pi)
\pre type of a is A
*/
expr pi_body_at(expr const & pi, expr const & a);
/**
\brief Lean Type Checker. It can also be used to infer types, universes and check whether a
type \c A is convertible to a type \c B.
@ -87,6 +96,9 @@ public:
bool is_flex_proposition(expr const & e, context const & ctx, metavar_env const & menv);
bool is_flex_proposition(expr const & e, context const & ctx = context());
/** \brief Return a Pi if \c e is convertible to Pi. Throw an exception otherwise. */
expr ensure_pi(expr const & e, context const & ctx = context());
/** \brief Reset internal caches */
void clear();

View file

@ -14,12 +14,10 @@ bool is_heq_eq_fn(expr const & e);
inline expr mk_heq_eq_th(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_heq_eq_fn(), e1, e2, e3}); }
expr mk_to_eq_fn();
bool is_to_eq_fn(expr const & e);
inline bool is_to_eq(expr const & e) { return is_app(e) && is_to_eq_fn(arg(e, 0)); }
inline expr mk_to_eq(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({mk_to_eq_fn(), e1, e2, e3, e4}); }
inline expr mk_to_eq_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({mk_to_eq_fn(), e1, e2, e3, e4}); }
expr mk_to_heq_fn();
bool is_to_heq_fn(expr const & e);
inline bool is_to_heq(expr const & e) { return is_app(e) && is_to_heq_fn(arg(e, 0)); }
inline expr mk_to_heq(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({mk_to_heq_fn(), e1, e2, e3, e4}); }
inline expr mk_to_heq_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({mk_to_heq_fn(), e1, e2, e3, e4}); }
expr mk_hrefl_fn();
bool is_hrefl_fn(expr const & e);
inline expr mk_hrefl_th(expr const & e1, expr const & e2) { return mk_app({mk_hrefl_fn(), e1, e2}); }

View file

@ -1,2 +1,2 @@
add_library(simplifier ceq.cpp)
add_library(simplifier ceq.cpp simplifier.cpp rewrite_rule_set.cpp)
target_link_libraries(simplifier ${LEAN_LIBS})

View file

@ -1,5 +1,5 @@
/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura

View file

@ -1,5 +1,5 @@
/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura

View file

@ -7,10 +7,12 @@ Author: Leonardo de Moura
#pragma once
#include "util/script_state.h"
#include "library/simplifier/ceq.h"
#include "library/simplifier/simplifier.h"
namespace lean {
inline void open_simplifier_module(lua_State * L) {
open_ceq(L);
open_simplifier(L);
}
inline void register_simplifier_module() {
script_state::register_module(open_simplifier_module);

View file

@ -0,0 +1,435 @@
/*
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <utility>
#include "util/flet.h"
#include "util/interrupt.h"
#include "kernel/type_checker.h"
#include "kernel/free_vars.h"
#include "kernel/instantiate.h"
#include "kernel/kernel.h"
#include "library/heq_decls.h"
#include "library/kernel_bindings.h"
#include "library/expr_pair.h"
#include "library/hop_match.h"
#ifndef LEAN_SIMPLIFIER_PROOFS
#define LEAN_SIMPLIFIER_PROOFS true
#endif
#ifndef LEAN_SIMPLIFIER_CONTEXTUAL
#define LEAN_SIMPLIFIER_CONTEXTUAL true
#endif
#ifndef LEAN_SIMPLIFIER_SINGLE_PASS
#define LEAN_SIMPLIFIER_SINGLE_PASS false
#endif
#ifndef LEAN_SIMPLIFIER_BETA
#define LEAN_SIMPLIFIER_BETA true
#endif
#ifndef LEAN_SIMPLIFIER_UNFOLD
#define LEAN_SIMPLIFIER_UNFOLD false
#endif
#ifndef LEAN_SIMPLIFIER_MAX_STEPS
#define LEAN_SIMPLIFIER_MAX_STEPS std::numeric_limits<unsigned>::max()
#endif
namespace lean {
static name g_simplifier_proofs {"simplifier", "proofs"};
static name g_simplifier_contextual {"simplifier", "contextual"};
static name g_simplifier_single_pass {"simplifier", "single_pass"};
static name g_simplifier_beta {"simplifier", "beta"};
static name g_simplifier_unfold {"simplifier", "unfold"};
static name g_simplifier_max_steps {"simplifier", "max_steps"};
RegisterBoolOption(g_simplifier_proofs, LEAN_SIMPLIFIER_PROOFS, "(simplifier) generate proofs");
RegisterBoolOption(g_simplifier_contextual, LEAN_SIMPLIFIER_CONTEXTUAL, "(simplifier) contextual simplification");
RegisterBoolOption(g_simplifier_single_pass, LEAN_SIMPLIFIER_SINGLE_PASS, "(simplifier) if false then the simplifier keeps applying simplifications as long as possible");
RegisterBoolOption(g_simplifier_beta, LEAN_SIMPLIFIER_BETA, "(simplifier) use beta-reductions");
RegisterBoolOption(g_simplifier_unfold, LEAN_SIMPLIFIER_UNFOLD, "(simplifier) unfolds non-opaque definitions");
RegisterUnsignedOption(g_simplifier_max_steps, LEAN_SIMPLIFIER_MAX_STEPS, "(simplifier) maximum number of steps");
bool get_simplifier_proofs(options const & opts) {
return opts.get_bool(g_simplifier_proofs, LEAN_SIMPLIFIER_PROOFS);
}
bool get_simplifier_contextual(options const & opts) {
return opts.get_bool(g_simplifier_contextual, LEAN_SIMPLIFIER_CONTEXTUAL);
}
bool get_simplifier_single_pass(options const & opts) {
return opts.get_bool(g_simplifier_single_pass, LEAN_SIMPLIFIER_SINGLE_PASS);
}
bool get_simplifier_beta(options const & opts) {
return opts.get_bool(g_simplifier_beta, LEAN_SIMPLIFIER_BETA);
}
bool get_simplifier_unfold(options const & opts) {
return opts.get_bool(g_simplifier_unfold, LEAN_SIMPLIFIER_UNFOLD);
}
unsigned get_simplifier_max_steps(options const & opts) {
return opts.get_unsigned(g_simplifier_max_steps, LEAN_SIMPLIFIER_MAX_STEPS);
}
class simplifier_fn {
ro_environment m_env;
type_checker m_tc;
bool m_has_heq;
context m_ctx;
// Configuration
bool m_proofs_enabled;
bool m_contextual;
bool m_single_pass;
bool m_beta;
bool m_unfold;
unsigned m_max_steps;
struct result {
expr m_out;
optional<expr> m_proof;
bool m_heq_proof;
explicit result(expr const & out, bool heq_proof = false):m_out(out), m_heq_proof(heq_proof) {}
result(expr const & out, expr const & pr, bool heq_proof = false):m_out(out), m_proof(pr), m_heq_proof(heq_proof) {}
};
struct set_context {
flet<context> m_set;
set_context(simplifier_fn & s, context const & new_ctx):m_set(s.m_ctx, new_ctx) {}
};
/**
\brief Return a lambda with body \c new_body, and name and domain from abst.
*/
static expr mk_lambda(expr const & abst, expr const & new_body) {
return ::lean::mk_lambda(abst_name(abst), abst_domain(abst), new_body);
}
bool is_proposition(expr const & e) {
return m_tc.is_proposition(e, m_ctx);
}
expr infer_type(expr const & e) {
return m_tc.infer_type(e, m_ctx);
}
expr ensure_pi(expr const & e) {
return m_tc.ensure_pi(e, m_ctx);
}
expr mk_congr1_th(expr const & f_type, expr const & f, expr const & new_f, expr const & a, expr const & Heq_f) {
expr const & A = abst_domain(f_type);
expr const & B = lower_free_vars(abst_body(f_type), 1, 1);
return ::lean::mk_congr1_th(A, B, f, new_f, a, Heq_f);
}
expr mk_congr2_th(expr const & f_type, expr const & a, expr const & new_a, expr const & f, expr const & Heq_a) {
expr const & A = abst_domain(f_type);
expr const & B = lower_free_vars(abst_body(f_type), 1, 1);
return ::lean::mk_congr2_th(A, B, a, new_a, f, Heq_a);
}
expr mk_congr_th(expr const & f_type, expr const & f, expr const & new_f, expr const & a, expr const & new_a,
expr const & Heq_f, expr const & Heq_a) {
expr const & A = abst_domain(f_type);
expr const & B = lower_free_vars(abst_body(f_type), 1, 1);
return ::lean::mk_congr_th(A, B, f, new_f, a, new_a, Heq_f, Heq_a);
}
expr mk_hcongr_th(expr const & f_type, expr const & new_f_type, expr const & f, expr const & new_f,
expr const & a, expr const & new_a, expr const & Heq_f, expr const & Heq_a) {
return ::lean::mk_hcongr_th(abst_domain(f_type),
abst_domain(new_f_type),
mk_lambda(f_type, abst_body(f_type)),
mk_lambda(new_f_type, abst_body(new_f_type)),
f, new_f, a, new_a, Heq_f, Heq_a);
}
expr mk_app_prefix(unsigned i, expr const & a) {
lean_assert(i > 0);
if (i == 1)
return arg(a, 0);
else
return mk_app(i, &arg(a, 0));
}
expr mk_app_prefix(unsigned i, buffer<expr> const & args) {
lean_assert(i > 0);
if (i == 1)
return args[0];
else
return mk_app(i, args.data());
}
result simplify_app(expr const & e) {
lean_assert(is_app(e));
buffer<expr> new_args;
buffer<optional<expr>> proofs; // used only if m_proofs_enabled
buffer<expr> f_types, new_f_types; // used only if m_proofs_enabled
buffer<bool> heq_proofs; // used only if m_has_heq && m_proofs_enabled
bool changed = false;
expr f = arg(e, 0);
expr f_type = infer_type(f);
result res_f = simplify(f);
expr new_f = res_f.m_out;
expr new_f_type;
if (new_f != f)
changed = true;
new_args.push_back(new_f);
if (m_proofs_enabled) {
proofs.push_back(res_f.m_proof);
f_types.push_back(f_type);
new_f_type = res_f.m_heq_proof ? infer_type(new_f) : f_type;
new_f_types.push_back(new_f_type);
if (m_has_heq)
heq_proofs.push_back(res_f.m_heq_proof);
}
unsigned num = num_args(e);
for (unsigned i = 1; i < num; i++) {
f_type = ensure_pi(f_type);
bool f_arrow = is_arrow(f_type);
expr const & a = arg(e, i);
result res_a(a);
if (m_has_heq || f_arrow) {
res_a = simplify(a);
if (res_a.m_out != a)
changed = true;
}
expr new_a = res_a.m_out;
new_args.push_back(new_a);
if (m_proofs_enabled) {
proofs.push_back(res_a.m_proof);
if (m_has_heq)
heq_proofs.push_back(res_a.m_heq_proof);
bool changed_f_type = !is_eqp(f_type, new_f_type);
if (f_arrow) {
f_type = lower_free_vars(abst_body(f_type), 1, 1);
new_f_type = changed_f_type ? lower_free_vars(abst_body(new_f_type), 1, 1) : f_type;
} else if (is_eqp(a, new_a)) {
f_type = pi_body_at(f_type, a);
new_f_type = changed_f_type ? pi_body_at(new_f_type, a) : f_type;
} else {
f_type = pi_body_at(f_type, a);
new_f_type = pi_body_at(new_f_type, new_a);
}
f_types.push_back(f_type);
new_f_types.push_back(new_f_type);
}
}
if (!changed) {
return rewrite_app(result(e));
} else if (!m_proofs_enabled) {
return rewrite_app(result(mk_app(new_args)));
} else {
expr out = mk_app(new_args);
unsigned i = 0;
while (i < num && !proofs[i]) {
// skip "reflexive" proofs
i++;
}
if (i == num)
return result(out);
expr pr;
bool heq_proof = false;
if (i == 0) {
pr = *(proofs[0]);
heq_proof = heq_proofs[0];
} else if (m_has_heq && heq_proofs[i]) {
expr f = mk_app_prefix(i, new_args);
pr = mk_hcongr_th(f_types[i-1], f_types[i-1], f, f, arg(e, i), new_args[i],
mk_hrefl_th(f_types[i-1], f), *(proofs[i]));
heq_proof = true;
} else {
expr f = mk_app_prefix(i, new_args);
pr = mk_congr2_th(f_types[i-1], arg(e, i), new_args[i], f, *(proofs[i]));
}
i++;
for (; i < num; i++) {
expr f = mk_app_prefix(i, e);
expr new_f = mk_app_prefix(i, new_args);
if (proofs[i]) {
if (m_has_heq && heq_proofs[i]) {
if (!heq_proof)
pr = mk_to_heq_th(f_types[i], f, new_f, pr);
pr = mk_hcongr_th(f_types[i-1], new_f_types[i-1], f, new_f, arg(e, i), new_args[i], pr, *(proofs[i]));
heq_proof = true;
} else {
pr = mk_congr_th(f_types[i-1], f, new_f, arg(e, i), new_args[i], pr, *(proofs[i]));
}
} else if (heq_proof) {
pr = mk_hcongr_th(f_types[i-1], new_f_types[i-1], f, new_f, arg(e, i), arg(e, i),
pr, mk_hrefl_th(abst_domain(f_types[i-1]), arg(e, i)));
} else {
lean_assert(!heq_proof);
pr = mk_congr1_th(f_types[i-1], f, new_f, arg(e, i), pr);
}
}
return rewrite_app(result(out, pr, heq_proof));
}
}
result rewrite_app(result const & r) {
return r;
}
result simplify_var(expr const & e) {
if (m_has_heq) {
// TODO(Leo)
return result(e);
} else {
return result(e);
}
}
result simplify_constant(expr const & e) {
lean_assert(is_constant(e));
if (m_unfold) {
auto obj = m_env->find_object(const_name(e));
if (should_unfold(obj)) {
expr e = obj->get_value();
if (m_single_pass) {
return result(e);
} else {
return simplify(e);
}
}
}
#if 1
if (const_name(e) == "a") {
auto obj = m_env->find_object("a_eq_0");
if (obj) {
expr r = arg(obj->get_type(), 3);
return result(r, mk_constant("a_eq_0"));
}
}
#endif
return result(e);
}
result simplify_lambda(expr const & e) {
lean_assert(is_lambda(e));
if (m_has_heq) {
// TODO(Leo)
return result(e);
} else {
set_context set(*this, extend(m_ctx, abst_name(e), abst_domain(e)));
result res_body = simplify(abst_body(e));
lean_assert(!res_body.m_heq_proof);
expr new_body = res_body.m_out;
if (is_eqp(new_body, abst_body(e)))
return result(e);
expr out = mk_lambda(e, new_body);
if (!m_proofs_enabled)
return result(out);
expr body_type = infer_type(abst_body(e));
expr pr = mk_funext_th(abst_domain(e), mk_lambda(e, body_type), e, out,
mk_lambda(e, *(res_body.m_proof)));
return result(out, pr);
}
}
result simplify_pi(expr const & e) {
lean_assert(is_pi(e));
if (m_has_heq) {
// TODO(Leo)
return result(e);
} else if (is_proposition(e)) {
set_context set(*this, extend(m_ctx, abst_name(e), abst_domain(e)));
result res_body = simplify(abst_body(e));
lean_assert(!res_body.m_heq_proof);
expr new_body = res_body.m_out;
if (is_eqp(new_body, abst_body(e)))
return result(e);
expr out = mk_pi(abst_name(e), abst_domain(e), new_body);
if (!m_proofs_enabled)
return result(out);
expr pr = mk_allext_th(abst_domain(e),
mk_lambda(e, abst_body(e)),
mk_lambda(e, abst_body(out)),
mk_lambda(e, *(res_body.m_proof)));
return result(out, pr);
} else {
// if the environment does not contain heq axioms, then we don't simplify Pi's that are not forall's
return result(e);
}
}
result simplify(expr const & e) {
check_system("simplifier");
switch (e.kind()) {
case expr_kind::Var: return simplify_var(e);
case expr_kind::Constant: return simplify_constant(e);
case expr_kind::Type:
case expr_kind::MetaVar:
case expr_kind::Value: return result(e);
case expr_kind::App: return simplify_app(e);
case expr_kind::Lambda: return simplify_lambda(e);
case expr_kind::Pi: return simplify_pi(e);
case expr_kind::Let: return simplify(instantiate(let_body(e), let_value(e)));
}
lean_unreachable();
}
void set_options(options const & o) {
m_proofs_enabled = get_simplifier_proofs(o);
m_contextual = get_simplifier_contextual(o);
m_single_pass = get_simplifier_single_pass(o);
m_beta = get_simplifier_beta(o);
m_unfold = true; // get_simplifier_unfold(o);
m_max_steps = get_simplifier_max_steps(o);
}
public:
simplifier_fn(ro_environment const & env, options const & o):
m_env(env), m_tc(env) {
m_has_heq = m_env->imported("heq");
set_options(o);
}
expr_pair operator()(expr const & e, context const & ctx) {
set_context set(*this, ctx);
auto r = simplify(e);
if (r.m_proof) {
return mk_pair(r.m_out, *(r.m_proof));
} else {
return mk_pair(r.m_out, mk_refl_th(infer_type(r.m_out), r.m_out));
}
}
};
expr_pair simplify(expr const & e, ro_environment const & env, context const & ctx, options const & opts) {
return simplifier_fn(env, opts)(e, ctx);
}
static int simplify_core(lua_State * L, expr const & e, ro_shared_environment const & env) {
int nargs = lua_gettop(L);
context ctx;
options opts;
if (nargs >= 3)
ctx = to_context(L, 3);
if (nargs >= 4)
opts = to_options(L, 4);
auto r = simplify(e, env, ctx, opts);
push_expr(L, r.first);
push_expr(L, r.second);
return 2;
}
static int simplify(lua_State * L) {
int nargs = lua_gettop(L);
expr const & e = to_expr(L, 1);
if (nargs == 1)
return simplify_core(L, e, ro_shared_environment(L));
else
return simplify_core(L, e, ro_shared_environment(L, 2));
}
void open_simplifier(lua_State * L) {
SET_GLOBAL_FUN(simplify, "simplify");
}
}

View file

@ -0,0 +1,15 @@
/*
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include "util/lua.h"
#include "kernel/environment.h"
#include "library/expr_pair.h"
namespace lean {
expr_pair simplify(expr const & e, ro_environment const & env, context const & ctx, options const & opts);
void open_simplifier(lua_State * L);
}