fix(tests/lean): adjust some tests to changes in the standard library
This commit is contained in:
parent
b777375469
commit
29763190ad
15 changed files with 31 additions and 34 deletions
|
@ -1,5 +1,5 @@
|
||||||
definition pnat.pnat : Type₁ :=
|
definition pnat.pnat : Type₁ :=
|
||||||
{n : ℕ | nat.gt n (nat.of_num 0)}
|
{n : ℕ | n > 0}
|
||||||
inductive prod : Type → Type → Type
|
inductive prod : Type → Type → Type
|
||||||
constructors:
|
constructors:
|
||||||
prod.mk : Π {A : Type} {B : Type}, A → B → A × B
|
prod.mk : Π {A : Type} {B : Type}, A → B → A × B
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
open nat nat_esimp
|
open nat
|
||||||
|
|
||||||
definition foo [unfold 1 3] (a : nat) (b : nat) (c :nat) : nat :=
|
definition foo [unfold 1 3] (a : nat) (b : nat) (c :nat) : nat :=
|
||||||
(a + c) * b
|
(a + c) * b
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
693.lean:10:2: proof state
|
693.lean:10:2: proof state
|
||||||
c : ℕ,
|
c : ℕ,
|
||||||
h : c = 1
|
h : c = 1
|
||||||
⊢ 1 * c = 1
|
⊢ foo 1 c 0 = foo 1 1 0
|
||||||
693.lean:18:2: proof state
|
693.lean:18:2: proof state
|
||||||
b c : ℕ,
|
b c : ℕ,
|
||||||
h : c = 1
|
h : c = 1
|
||||||
|
@ -13,4 +13,4 @@ h : c = 1
|
||||||
693.lean:34:2: proof state
|
693.lean:34:2: proof state
|
||||||
b c : ℕ,
|
b c : ℕ,
|
||||||
h : c = 1
|
h : c = 1
|
||||||
⊢ 2 * c = foo c 1 1
|
⊢ foo 1 c 1 = foo c 1 1
|
||||||
|
|
|
@ -1 +1,3 @@
|
||||||
check 1.2
|
import data.rat
|
||||||
|
open rat
|
||||||
|
check (1.2:rat)
|
||||||
|
|
|
@ -1 +1 @@
|
||||||
793b.lean:1:6: error: invalid decimal number, environment does not contain 'rat.of_num' (solution: use 'import data.rat')
|
6 / 5 : ℚ
|
||||||
|
|
|
@ -11,7 +11,7 @@ theorem pred_succ (n : Nat) : pred (succ n) = n := rfl
|
||||||
|
|
||||||
theorem succ.inj {n m : Nat} (H : succ n = succ m) : n = m
|
theorem succ.inj {n m : Nat} (H : succ n = succ m) : n = m
|
||||||
:= calc
|
:= calc
|
||||||
n = pred (succ n) : pred_succ n⁻¹
|
n = pred (succ n) : pred_succ n
|
||||||
... = pred (succ m) : {H}
|
... = pred (succ m) : {H}
|
||||||
... = m : pred_succ m
|
... = m : pred_succ m
|
||||||
|
|
||||||
|
|
|
@ -12,8 +12,8 @@ set_option pp.abbreviations true
|
||||||
|
|
||||||
print definition tst
|
print definition tst
|
||||||
|
|
||||||
abbreviation id [parsing-only] {A : Type} (a : A) := a
|
abbreviation id [parsing_only] {A : Type} (a : A) := a
|
||||||
|
|
||||||
definition tst1 := id 10
|
definition tst1 :nat := id 10
|
||||||
|
|
||||||
print definition tst1
|
print definition tst1
|
||||||
|
|
|
@ -2,5 +2,5 @@ definition tst : ℕ
|
||||||
(λ (a : Type₁), 2 + 3) ℕ
|
(λ (a : Type₁), 2 + 3) ℕ
|
||||||
definition tst : ℕ
|
definition tst : ℕ
|
||||||
foo ℕ
|
foo ℕ
|
||||||
definition tst1 : num
|
definition tst1 : ℕ
|
||||||
(λ (A : Type₁) (a : A), a) num 10
|
(λ (A : Type₁) (a : A), a) ℕ 10
|
||||||
|
|
|
@ -9,4 +9,4 @@ definition Functor.to_fun [coercion] (f : Functor) {A B : Type} : A → B :=
|
||||||
Functor.rec (λ f, f) f A B
|
Functor.rec (λ f, f) f A B
|
||||||
|
|
||||||
constant f : Functor
|
constant f : Functor
|
||||||
check f 0 = 0
|
check f (0:num) = (0:num)
|
||||||
|
|
|
@ -1,11 +1,6 @@
|
||||||
error_full_names.lean:4:8: error: type mismatch at application
|
error_full_names.lean:4:8: error: failed to synthesize placeholder
|
||||||
0 + nat.zero
|
|
||||||
term
|
⊢ has_add nat
|
||||||
nat.zero
|
|
||||||
has type
|
|
||||||
nat
|
|
||||||
but is expected to have type
|
|
||||||
ℕ
|
|
||||||
error_full_names.lean:8:6: error: type mismatch at application
|
error_full_names.lean:8:6: error: type mismatch at application
|
||||||
nat.succ nat.zero
|
nat.succ nat.zero
|
||||||
term
|
term
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
eval nat.add (nat.of_num 3) (nat.of_num 6)
|
eval nat.add (nat.of_num 3) (nat.of_num 6)
|
||||||
open nat
|
open nat
|
||||||
eval nat.add (nat.of_num 3) (nat.of_num 6)
|
eval nat.add (nat.of_num 3) (nat.of_num 6)
|
||||||
eval 3 + 6
|
eval (3:nat) + 6
|
||||||
|
|
|
@ -17,9 +17,9 @@ infixr `&` := h
|
||||||
|
|
||||||
set_option pp.notation false
|
set_option pp.notation false
|
||||||
|
|
||||||
check -1 + 2
|
check -(1:num) + 2
|
||||||
check 1 & 2 & 3 & 4
|
check 1 & 2 & 3 & 4
|
||||||
check 1 - 2 - 3 - 4
|
check (1:num) - 2 - 3 - 4
|
||||||
|
|
||||||
infixr `~~`:60 := h
|
infixr `~~`:60 := h
|
||||||
infixl `!!`:60 := h
|
infixl `!!`:60 := h
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
g (f 1) 2 : num
|
add (f 1) 2 : num
|
||||||
|
h 1 (h 2 (h 3 4)) : num
|
||||||
|
sub (sub (sub 1 2) 3) 4 : num
|
||||||
h 1 (h 2 (h 3 4)) : num
|
h 1 (h 2 (h 3 4)) : num
|
||||||
h (h (h 1 2) 3) 4 : num
|
h (h (h 1 2) 3) 4 : num
|
||||||
h 1 (h 2 (h 3 4)) : num
|
h 1 (h (add 2 3) 4) : num
|
||||||
h (h (h 1 2) 3) 4 : num
|
|
||||||
h 1 (h (g 2 3) 4) : num
|
|
||||||
|
|
|
@ -1,18 +1,18 @@
|
||||||
simplification rules for iff
|
simplification rules for iff
|
||||||
#2, ?M_1 - ?M_2 < succ ?M_1 ↦ true
|
|
||||||
#1, ?M_1 < 0 ↦ false
|
|
||||||
#1, ?M_1 < succ ?M_1 ↦ true
|
|
||||||
#1, ?M_1 < ?M_1 ↦ false
|
|
||||||
#1, 0 < succ ?M_1 ↦ true
|
|
||||||
#2, ?M_1 - ?M_2 ≤ ?M_1 ↦ true
|
#2, ?M_1 - ?M_2 ≤ ?M_1 ↦ true
|
||||||
#1, 0 ≤ ?M_1 ↦ true
|
#1, 0 ≤ ?M_1 ↦ true
|
||||||
#1, succ ?M_1 ≤ ?M_1 ↦ false
|
#1, succ ?M_1 ≤ ?M_1 ↦ false
|
||||||
#1, pred ?M_1 ≤ ?M_1 ↦ true
|
#1, pred ?M_1 ≤ ?M_1 ↦ true
|
||||||
#1, ?M_1 ≤ succ ?M_1 ↦ true
|
#1, ?M_1 ≤ succ ?M_1 ↦ true
|
||||||
|
#2, ?M_1 - ?M_2 < succ ?M_1 ↦ true
|
||||||
|
#1, ?M_1 < 0 ↦ false
|
||||||
|
#1, ?M_1 < succ ?M_1 ↦ true
|
||||||
|
#1, ?M_1 < ?M_1 ↦ false
|
||||||
|
#1, 0 < succ ?M_1 ↦ true
|
||||||
simplification rules for eq
|
simplification rules for eq
|
||||||
#1, g ?M_1 ↦ f ?M_1 + 1
|
#1, g ?M_1 ↦ f ?M_1 + 1
|
||||||
#2, g ?M_1 ↦ 1
|
#2, g ?M_1 ↦ 1
|
||||||
#2, f ?M_1 ↦ 0
|
#2, f ?M_1 ↦ 0
|
||||||
|
#4, ite ?M_1 ?M_4 ?M_4 ↦ ?M_4
|
||||||
#1, 0 - ?M_1 ↦ 0
|
#1, 0 - ?M_1 ↦ 0
|
||||||
#2, succ ?M_1 - succ ?M_2 ↦ ?M_1 - ?M_2
|
#2, succ ?M_1 - succ ?M_2 ↦ ?M_1 - ?M_2
|
||||||
#4, ite ?M_1 ?M_4 ?M_4 ↦ ?M_4
|
|
||||||
|
|
|
@ -6,4 +6,4 @@ constant f (a b : nat) (H : R a b) : nat
|
||||||
axiom Rtrue (a b : nat) : R a b
|
axiom Rtrue (a b : nat) : R a b
|
||||||
|
|
||||||
|
|
||||||
check f 1 0 (Rtrue (pr1 (pair 1 0)) 0)
|
check f 1 0 (Rtrue (pr1 (pair 1 (0:nat))) 0)
|
||||||
|
|
Loading…
Reference in a new issue