feat(hott): add definitions using truncations and theorems about them

define embedding, (split) surjection, retraction, existential quantifier, 'or' connective
also add a whole bunch of theorems about these definitions

still has two sorry's which can be solved after #564 is closed
This commit is contained in:
Floris van Doorn 2015-04-28 20:48:39 -04:00 committed by Leonardo de Moura
parent 15c2ee289f
commit 297d50378d
17 changed files with 644 additions and 228 deletions

View file

@ -2,92 +2,111 @@
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.category.adjoint
Module: algebra.precategory.adjoint
Authors: Floris van Doorn
-/
import .constructions.functor
import algebra.category.constructions .constructions types.function arity
open category functor nat_trans eq is_trunc iso equiv prod
variables {C D : Precategory} {F : C ⇒ D}
-- structure adjoint (F : C ⇒ D) (G : D ⇒ C) :=
-- (unit : functor.id ⟹ G ∘f F) -- η
-- (counit : F ∘f G ⟹ functor.id) -- ε
-- (H : (counit ∘nf F) ∘n (nat_trans_of_eq !functor.assoc) ∘n (F ∘fn unit)
-- = nat_trans_of_eq !functor.comp_id_eq_id_comp)
-- (K : (G ∘fn counit) ∘n (nat_trans_of_eq !functor.assoc⁻¹) ∘n (unit ∘nf G)
-- = nat_trans_of_eq !functor.comp_id_eq_id_comp⁻¹)
-- structure is_left_adjoint (F : C ⇒ D) :=
-- (right_adjoint : D ⇒ C) -- G
-- (is_adjoint : adjoint F right_adjoint)
structure is_left_adjoint (F : C ⇒ D) :=
(right_adjoint : D ⇒ C) -- G
(unit : functor.id ⟹ right_adjoint ∘f F) -- η
(counit : F ∘f right_adjoint ⟹ functor.id) -- ε
(H : (counit ∘nf F) ∘n (nat_trans_of_eq !functor.assoc) ∘n (F ∘fn unit)
= nat_trans_of_eq !functor.comp_id_eq_id_comp)
(K : (right_adjoint ∘fn counit) ∘n (nat_trans_of_eq !functor.assoc⁻¹) ∘n (unit ∘nf right_adjoint)
= nat_trans_of_eq !functor.comp_id_eq_id_comp⁻¹)
structure is_equivalence (F : C ⇒ D) extends is_left_adjoint F :=
mk' ::
(is_iso_unit : is_iso unit)
(is_iso_counit : is_iso counit)
structure equivalence (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_equivalence to_functor)
--TODO: review and change
--TODO: make some or all of these structures?
definition faithful (F : C ⇒ D) :=
Π⦃c c' : C⦄, (Π(f f' : c ⟶ c'), to_fun_hom F f = to_fun_hom F f' → f = f')
definition full (F : C ⇒ D) := Π⦃c c' : C⦄ (g : F c ⟶ F c'), Σ(f : c ⟶ c'), F f = g --merely
definition fully_faithful (F : C ⇒ D) := Π⦃c c' : C⦄, is_equiv (@to_fun_hom _ _ F c c')
definition split_essentially_surjective (F : C ⇒ D) :=
Π⦃d : D⦄, Σ(c : C), F c ≅ d
definition essentially_surjective (F : C ⇒ D) :=
Π⦃d : D⦄, Σ(c : C), F c ≅ d --merely
definition is_weak_equivalence (F : C ⇒ D) :=
fully_faithful F × essentially_surjective F
definition is_isomorphism (F : C ⇒ D) :=
fully_faithful F × is_equiv (to_fun_ob F)
structure isomorphism (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_isomorphism to_functor)
open category functor nat_trans eq is_trunc iso equiv prod trunc function
namespace category
variables {C D : Precategory} {F : C ⇒ D}
-- do we want to have a structure "is_adjoint" and define
-- structure is_left_adjoint (F : C ⇒ D) :=
-- (right_adjoint : D ⇒ C) -- G
-- (is_adjoint : adjoint F right_adjoint)
structure is_left_adjoint [class] (F : C ⇒ D) :=
(G : D ⇒ C)
(η : functor.id ⟹ G ∘f F)
(ε : F ∘f G ⟹ functor.id)
(H : Π(c : C), (ε (F c)) ∘ (F (η c)) = ID (F c))
(K : Π(d : D), (G (ε d)) ∘ (η (G d)) = ID (G d))
abbreviation right_adjoint := @is_left_adjoint.G
abbreviation unit := @is_left_adjoint.η
abbreviation counit := @is_left_adjoint.ε
-- structure is_left_adjoint [class] (F : C ⇒ D) :=
-- (right_adjoint : D ⇒ C) -- G
-- (unit : functor.id ⟹ right_adjoint ∘f F) -- η
-- (counit : F ∘f right_adjoint ⟹ functor.id) -- ε
-- (H : Π(c : C), (counit (F c)) ∘ (F (unit c)) = ID (F c))
-- (K : Π(d : D), (right_adjoint (counit d)) ∘ (unit (right_adjoint d)) = ID (right_adjoint d))
structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F :=
mk' ::
(is_iso_unit : is_iso η)
(is_iso_counit : is_iso ε)
structure equivalence (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_equivalence to_functor)
--TODO: review and change
--TODO: make some or all of these structures?
definition faithful (F : C ⇒ D) :=
Π⦃c c' : C⦄ (f f' : c ⟶ c'), F f = F f' → f = f'
definition full (F : C ⇒ D) := Π⦃c c' : C⦄ (g : F c ⟶ F c'), ∃(f : c ⟶ c'), F f = g
definition fully_faithful [reducible] (F : C ⇒ D) := Π⦃c c' : C⦄, is_equiv (@to_fun_hom _ _ F c c')
definition split_essentially_surjective (F : C ⇒ D) :=
Π⦃d : D⦄, Σ(c : C), F c ≅ d
definition essentially_surjective (F : C ⇒ D) :=
Π⦃d : D⦄, ∃(c : C), F c ≅ d
definition is_weak_equivalence (F : C ⇒ D) :=
fully_faithful F × essentially_surjective F
definition is_isomorphism (F : C ⇒ D) :=
fully_faithful F × is_equiv (to_fun_ob F)
structure isomorphism (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_isomorphism to_functor)
-- infix `⊣`:55 := adjoint
infix `⋍`:25 := equivalence -- \backsimeq
infix `≌`:25 := isomorphism -- \backcong
--TODO: add shortcuts for Σ⋍≌▹
infix `⋍`:25 := equivalence -- \backsimeq or \equiv
infix `≌`:25 := isomorphism -- \backcong or \iso
definition is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D)
: is_hprop (is_left_adjoint F) :=
sorry
begin
apply is_hprop.mk,
intros [G, G'], cases G with [G, η, ε, H, K], cases G' with [G', η', ε', H', K'],
fapply (apd011111 is_left_adjoint.mk),
{ fapply functor_eq,
{ intro d, apply eq_of_iso, fapply iso.MK,
{ exact (G' (ε d) ∘ η' (G d))},
{ exact (G (ε' d) ∘ η (G' d))},
{ apply sorry /-rewrite [assoc, -{((G (ε' d)) ∘ (η (G' d))) ∘ (G' (ε d))}(assoc)],-/
-- apply concat, apply (ap (λc, c ∘ η' _)), rewrite -assoc, apply idp
},
--/-rewrite [-nat_trans.assoc]-/apply sorry
---assoc (G (ε' d)) (η (G' d)) (G' (ε d))
{ apply sorry}},
{ apply sorry},
},
{ apply sorry},
{ apply sorry},
{ apply is_hprop.elim},
{ apply is_hprop.elim},
end
definition is_equivalence.mk (F : C ⇒ D) (G : D ⇒ C) (η : G ∘f F ≅ functor.id)
(ε : F ∘f G ≅ functor.id) : is_equivalence F :=
sorry
definition full_of_fully_faithful (H : fully_faithful F) : full F :=
sorry
sorry --λc c' g, trunc.elim _ _
definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F :=
sorry
λc c' f f' p, is_injective_of_is_embedding p
definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F :=
sorry
@ -118,7 +137,7 @@ namespace category
sorry
definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F
Σ/-MERELY-/(G : D ⇒ C), functor.id = G ∘f F × F ∘f G = functor.id :=
(G : D ⇒ C), functor.id = G ∘f F × F ∘f G = functor.id :=
sorry
definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F :=

View file

@ -159,14 +159,20 @@ namespace category
end functor
definition Category_functor_of_precategory (D : Category) (C : Precategory) : Category :=
category.MK (D ^c C) (functor.is_univalent D C)
definition category_functor [instance] (D : Category) (C : Precategory)
: category (D ^c C) :=
category.mk (D ^c C) (functor.is_univalent D C)
definition Category_functor (D : Category) (C : Category) : Category :=
Category_functor_of_precategory D C
definition Category_functor (D : Category) (C : Precategory) : Category :=
category.Mk (D ^c C) !category_functor
--this definition is only useful if the exponent is a category,
-- and the elaborator has trouble with inserting the coercion
definition Category_functor' (D C : Category) : Category :=
Category_functor D C
namespace ops
infixr `^c2`:35 := Category_functor_of_precategory
infixr `^c2`:35 := Category_functor
end ops

View file

@ -0,0 +1,9 @@
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.category.default
Authors: Floris van Doorn
-/
import .category .strict .groupoid .constructions

View file

@ -230,11 +230,11 @@ namespace iso
epi.mk
(λ c g h H,
calc
g = g ∘ id : by rewrite id_right
... = g ∘ f ∘ section_of f : by rewrite -comp_section
... = h ∘ f ∘ section_of f : by rewrite [assoc, H, -assoc]
... = h ∘ id : by rewrite comp_section
... = h : by rewrite id_right)
g = g ∘ id : by rewrite id_right
... = g ∘ f ∘ section_of f : by rewrite -comp_section
... = h ∘ f ∘ section_of f : by rewrite [assoc, H, -assoc]
... = h ∘ id : by rewrite comp_section
... = h : by rewrite id_right)
definition mono_comp [instance] (g : b ⟶ c) (f : a ⟶ b) [Hf : mono f] [Hg : mono g]
: mono (g ∘ f) :=

View file

@ -93,12 +93,16 @@ namespace nat_trans
... = F (η b ∘ G f) : by rewrite (naturality η f)
... = F (η b) ∘ F (G f) : by rewrite respect_comp)
infixr `∘nf`:60 := nat_trans_functor_compose
infixr `∘fn`:60 := functor_nat_trans_compose
infixr `∘nf`:62 := nat_trans_functor_compose
infixr `∘fn`:62 := functor_nat_trans_compose
definition functor_nat_trans_compose_commute (η : F ⟹ G) (θ : F' ⟹ G')
definition nf_fn_eq_fn_nf_pt (η : F ⟹ G) (θ : F' ⟹ G') (c : C)
: (θ (G c)) ∘ (F' (η c)) = (G' (η c)) ∘ (θ (F c)) :=
(naturality θ (η c))⁻¹
definition nf_fn_eq_fn_nf (η : F ⟹ G) (θ : F' ⟹ G')
: (θ ∘nf G) ∘n (F' ∘fn η) = (G' ∘fn η) ∘n (θ ∘nf F) :=
nat_trans_eq (λc, (naturality θ (η c))⁻¹)
nat_trans_eq (λc, !nf_fn_eq_fn_nf_pt)
definition fn_n_distrib (F' : D ⇒ E) (η : G ⟹ H) (θ : F ⟹ G)
: F' ∘fn (η ∘n θ) = (F' ∘fn η) ∘n (F' ∘fn θ) :=

View file

@ -14,6 +14,7 @@ variables {a a' : A} {u u' : U} {v v' : V} {w w' : W} {x x' x'' : X} {y y' : Y}
{b : B a} {b' : B a'}
{c : C a b} {c' : C a' b'}
{d : D a b c} {d' : D a' b' c'}
{e : E a b c d} {e' : E a' b' c' d'}
namespace eq
/-
@ -49,48 +50,54 @@ namespace eq
notation f `3`:50 g := homotopy3 f g
definition ap011 (f : U → V → W) (Hu : u = u') (Hv : v = v') : f u v = f u' v' :=
eq.rec_on Hu (ap (f u) Hv)
by cases Hu; exact (ap (f u) Hv)
definition ap0111 (f : U → V → W → X) (Hu : u = u') (Hv : v = v') (Hw : w = w')
: f u v w = f u' v' w' :=
eq.rec_on Hu (ap011 (f u) Hv Hw)
by cases Hu; exact (ap011 (f u) Hv Hw)
definition ap01111 (f : U → V → W → X → Y) (Hu : u = u') (Hv : v = v') (Hw : w = w') (Hx : x = x')
: f u v w x = f u' v' w' x' :=
eq.rec_on Hu (ap0111 (f u) Hv Hw Hx)
by cases Hu; exact (ap0111 (f u) Hv Hw Hx)
definition ap011111 (f : U → V → W → X → Y → Z)
(Hu : u = u') (Hv : v = v') (Hw : w = w') (Hx : x = x') (Hy : y = y')
: f u v w x y = f u' v' w' x' y' :=
eq.rec_on Hu (ap01111 (f u) Hv Hw Hx Hy)
by cases Hu; exact (ap01111 (f u) Hv Hw Hx Hy)
definition ap0111111 (f : U → V → W → X → Y → Z → A)
(Hu : u = u') (Hv : v = v') (Hw : w = w') (Hx : x = x') (Hy : y = y') (Hz : z = z')
: f u v w x y z = f u' v' w' x' y' z' :=
eq.rec_on Hu (ap011111 (f u) Hv Hw Hx Hy Hz)
by cases Hu; exact (ap011111 (f u) Hv Hw Hx Hy Hz)
definition ap010 (f : X → Πa, B a) (Hx : x = x') : f x f x' :=
λa, eq.rec_on Hx idp
λa, by cases Hx; exact idp
definition ap0100 (f : X → Πa b, C a b) (Hx : x = x') : f x 2 f x' :=
λa b, eq.rec_on Hx idp
λa b, by cases Hx; exact idp
definition ap01000 (f : X → Πa b c, D a b c) (Hx : x = x') : f x 3 f x' :=
λa b c, eq.rec_on Hx idp
λa b c, by cases Hx; exact idp
definition apd011 (f : Πa, B a → Z) (Ha : a = a') (Hb : (Ha ▹ b) = b')
: f a b = f a' b' :=
eq.rec_on Hb (eq.rec_on Ha idp)
by cases Ha; cases Hb; exact idp
definition apd0111 (f : Πa b, C a b → Z) (Ha : a = a') (Hb : (Ha ▹ b) = b')
(Hc : apd011 C Ha Hb ▹ c = c')
: f a b c = f a' b' c' :=
eq.rec_on Hc (eq.rec_on Hb (eq.rec_on Ha idp))
by cases Ha; cases Hb; cases Hc; exact idp
definition apd01111 (f : Πa b c, D a b c → Z) (Ha : a = a') (Hb : (Ha ▹ b) = b')
(Hc : apd011 C Ha Hb ▹ c = c') (Hd : apd0111 D Ha Hb Hc ▹ d = d')
: f a b c d = f a' b' c' d' :=
eq.rec_on Hd (eq.rec_on Hc (eq.rec_on Hb (eq.rec_on Ha idp)))
by cases Ha; cases Hb; cases Hc; cases Hd; exact idp
definition apd011111 (f : Πa b c d, E a b c d → Z) (Ha : a = a') (Hb : (Ha ▹ b) = b')
(Hc : apd011 C Ha Hb ▹ c = c') (Hd : apd0111 D Ha Hb Hc ▹ d = d')
(He : apd01111 E Ha Hb Hc Hd ▹ e = e')
: f a b c d e = f a' b' c' d' e' :=
by cases Ha; cases Hb; cases Hc; cases Hd; cases He; exact idp
definition apd100 {f g : Πa b, C a b} (p : f = g) : f 2 g :=
λa b, apd10 (apd10 p a) b

View file

@ -91,10 +91,13 @@ namespace circle
eq_inv_tr_of_tr_eq (tr_eq_of_eq_inv_tr q) = q :=
by cases p; exact idp
definition con_refl {A : Type} {x y : A} (p : x = y) : p ⬝ refl _ = p :=
eq.rec_on p idp
theorem rec_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) :
apd (rec Pbase Ploop) loop = Ploop :=
begin
rewrite [↑loop,apd_con,↑rec,↑rec2_on,↑base,rec2_seg1,apd_inv,rec2_seg2],
rewrite [↑loop,apd_con,↑rec,↑rec2_on,↑base,rec2_seg1,apd_inv,rec2_seg2,↑ap], --con_idp should work here
apply concat, apply (ap (λx, x ⬝ _)), apply con_idp, esimp,
rewrite [rec_loop_helper,inv_con_inv_left],
apply con_inv_cancel_left

View file

@ -31,4 +31,106 @@ namespace trunc
because the universe is generally not a set
-/
--export is_trunc
variables {X Y Z : Type} {P : X → Type} (A B : Type) (n : trunc_index)
local attribute is_trunc_eq [instance]
definition is_equiv_tr [instance] [H : is_trunc n A] : is_equiv (@tr n A) :=
adjointify _
(trunc.rec id)
(λaa, trunc.rec_on aa (λa, idp))
(λa, idp)
definition equiv_trunc [H : is_trunc n A] : A ≃ trunc n A :=
equiv.mk tr _
definition is_trunc_of_is_equiv_tr [H : is_equiv (@tr n A)] : is_trunc n A :=
is_trunc_is_equiv_closed n tr⁻¹
definition untrunc_of_is_trunc [reducible] [H : is_trunc n A] : trunc n A → A :=
tr⁻¹
/- Functoriality -/
definition trunc_functor (f : X → Y) : trunc n X → trunc n Y :=
λxx, trunc.rec_on xx (λx, tr (f x))
-- by intro xx; apply (trunc.rec_on xx); intro x; exact (tr (f x))
-- by intro xx; fapply (trunc.rec_on xx); intro x; exact (tr (f x))
-- by intro xx; exact (trunc.rec_on xx (λx, (tr (f x))))
definition trunc_functor_compose (f : X → Y) (g : Y → Z)
: trunc_functor n (g ∘ f) trunc_functor n g ∘ trunc_functor n f :=
λxx, trunc.rec_on xx (λx, idp)
definition trunc_functor_id : trunc_functor n (@id A) id :=
λxx, trunc.rec_on xx (λx, idp)
definition is_equiv_trunc_functor (f : X → Y) [H : is_equiv f] : is_equiv (trunc_functor n f) :=
adjointify _
(trunc_functor n f⁻¹)
(λyy, trunc.rec_on yy (λy, ap tr !right_inv))
(λxx, trunc.rec_on xx (λx, ap tr !left_inv))
section
open prod.ops
definition trunc_prod_equiv : trunc n (X × Y) ≃ trunc n X × trunc n Y :=
sorry
-- equiv.MK (λpp, trunc.rec_on pp (λp, (tr p.1, tr p.2)))
-- (λp, trunc.rec_on p.1 (λx, trunc.rec_on p.2 (λy, tr (x,y))))
-- sorry --(λp, trunc.rec_on p.1 (λx, trunc.rec_on p.2 (λy, idp)))
-- (λpp, trunc.rec_on pp (λp, prod.rec_on p (λx y, idp)))
-- begin
-- fapply equiv.MK,
-- apply sorry, --{exact (λpp, trunc.rec_on pp (λp, (tr p.1, tr p.2)))},
-- apply sorry, /-{intro p, cases p with (xx, yy),
-- apply (trunc.rec_on xx), intro x,
-- apply (trunc.rec_on yy), intro y, exact (tr (x,y))},-/
-- apply sorry, /-{intro p, cases p with (xx, yy),
-- apply (trunc.rec_on xx), intro x,
-- apply (trunc.rec_on yy), intro y, apply idp},-/
-- apply sorry --{intro pp, apply (trunc.rec_on pp), intro p, cases p, apply idp},
-- end
end
/- Propositional truncation -/
-- should this live in hprop?
definition merely [reducible] (A : Type) : Type := trunc -1 A
notation `||`:max A `||`:0 := merely A
notation `∥`:max A `∥`:0 := merely A
definition Exists [reducible] (P : X → Type) : Type := ∥ sigma P ∥
definition or [reducible] (A B : Type) : Type := ∥ A ⊎ B ∥
notation `exists` binders `,` r:(scoped P, Exists P) := r
notation `∃` binders `,` r:(scoped P, Exists P) := r
notation A `\/` B := or A B
notation A B := or A B
definition merely.intro [reducible] (a : A) : ∥ A ∥ := tr a
definition exists.intro [reducible] (x : X) (p : P x) : ∃x, P x := tr ⟨x, p⟩
definition or.intro_left [reducible] (x : X) : X Y := tr (inl x)
definition or.intro_right [reducible] (y : Y) : X Y := tr (inr y)
definition is_contr_of_merely_hprop [H : is_hprop A] (aa : merely A) : is_contr A :=
is_contr_of_inhabited_hprop (trunc.rec_on aa id)
section
open sigma.ops
definition trunc_sigma_equiv : trunc n (Σ x, P x) ≃ trunc n (Σ x, trunc n (P x)) :=
equiv.MK (λpp, trunc.rec_on pp (λp, tr ⟨p.1, tr p.2⟩))
(λpp, trunc.rec_on pp (λp, trunc.rec_on p.2 (λb, tr ⟨p.1, b⟩)))
(λpp, trunc.rec_on pp (λp, sigma.rec_on p (λa bb, trunc.rec_on bb (λb, by esimp))))
(λpp, trunc.rec_on pp (λp, sigma.rec_on p (λa b, by esimp)))
definition trunc_sigma_equiv_of_is_trunc [H : is_trunc n X]
: trunc n (Σ x, P x) ≃ Σ x, trunc n (P x) :=
calc
trunc n (Σ x, P x) ≃ trunc n (Σ x, trunc n (P x)) : trunc_sigma_equiv
... ≃ Σ x, trunc n (P x) : equiv.symm !equiv_trunc
end
end trunc

View file

@ -218,7 +218,6 @@ namespace is_equiv
definition is_equiv_tr [instance] {A : Type} (P : A → Type) {x y : A} (p : x = y) : (is_equiv (transport P p)) :=
is_equiv.mk _ (transport P p⁻¹) (tr_inv_tr p) (inv_tr_tr p) (tr_inv_tr_lemma p)
end is_equiv
open is_equiv

View file

@ -50,8 +50,6 @@ infixr ∘' := dcompose
infixl on := on_fun
infixr $ := app
notation f `-[` op `]-` g := combine f op g
-- Trick for using any binary function as infix operator
notation a `⟨` f `⟩` b := f a b
end function

View file

@ -127,7 +127,7 @@ namespace is_trunc
A H
--in the proof the type of H is given explicitly to make it available for class inference
definition is_trunc_of_leq (A : Type) (n m : trunc_index) (Hnm : n ≤ m)
definition is_trunc_of_leq.{l} (A : Type.{l}) {n m : trunc_index} (Hnm : n ≤ m)
[Hn : is_trunc n A] : is_trunc m A :=
have base : ∀k A, k ≤ -2 → is_trunc k A → (is_trunc -2 A), from
λ k A, trunc_index.cases_on k
@ -149,11 +149,11 @@ namespace is_trunc
definition is_trunc_succ_of_is_hprop (A : Type) (n : trunc_index) [H : is_hprop A]
: is_trunc (n.+1) A :=
is_trunc_of_leq A -1 (n.+1) star
is_trunc_of_leq A star
definition is_trunc_succ_succ_of_is_hset (A : Type) (n : trunc_index) [H : is_hset A]
: is_trunc (n.+2) A :=
is_trunc_of_leq A nat.zero (n.+2) star
is_trunc_of_leq A star
/- hprops -/
@ -204,8 +204,12 @@ namespace is_trunc
abbreviation hprop := -1-Type
abbreviation hset := 0-Type
protected definition hprop.mk := @trunctype.mk -1
protected definition hset.mk := @trunctype.mk (-1.+1)
protected abbreviation hprop.mk := @trunctype.mk -1
protected abbreviation hset.mk := @trunctype.mk (-1.+1)
protected abbreviation trunctype.mk' [parsing-only] (n : trunc_index) (A : Type)
[H : is_trunc n A] : n-Type :=
trunctype.mk A H
/- interaction with equivalences -/
@ -234,10 +238,18 @@ namespace is_trunc
IH (f⁻¹ x = f⁻¹ y) _ (x = y) (ap f⁻¹)⁻¹ !is_equiv_inv))
A HA B f H
definition is_trunc_is_equiv_closed_rev (n : trunc_index) (f : A → B) [H : is_equiv f]
[HA : is_trunc n B] : is_trunc n A :=
is_trunc_is_equiv_closed n f⁻¹
definition is_trunc_equiv_closed (n : trunc_index) (f : A ≃ B) [HA : is_trunc n A]
: is_trunc n B :=
is_trunc_is_equiv_closed n (to_fun f)
definition is_trunc_equiv_closed_rev (n : trunc_index) (f : A ≃ B) [HA : is_trunc n B]
: is_trunc n A :=
is_trunc_is_equiv_closed n (to_inv f)
definition is_equiv_of_is_hprop [HA : is_hprop A] [HB : is_hprop B] (f : A → B) (g : B → A)
: is_equiv f :=
is_equiv.mk f g (λb, !is_hprop.elim) (λa, !is_hprop.elim) (λa, !is_hset.elim)

View file

@ -4,8 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: types.default
Authors: Floris van Doorn
The core of the HoTT library
-/
import .sigma .prod .pi .equiv .fiber .eq .trunc .arrow .pointed

View file

@ -9,53 +9,47 @@ Ported from Coq HoTT
Theorems about the types equiv and is_equiv
-/
import types.fiber types.arrow arity
import .fiber .arrow arity .hprop_trunc
open eq is_trunc sigma sigma.ops arrow pi
open eq is_trunc sigma sigma.ops arrow pi fiber function equiv
namespace is_equiv
open equiv function
section
open fiber
variables {A B : Type} (f : A → B) [H : is_equiv f]
include H
definition is_contr_fiber_of_is_equiv (b : B) : is_contr (fiber f b) :=
is_contr.mk
(fiber.mk (f⁻¹ b) (right_inv f b))
(λz, fiber.rec_on z (λa p, fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) (calc
right_inv f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ right_inv f b) : by rewrite inv_con_cancel_left
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (right_inv f (f a) ⬝ p) : by rewrite ap_con_eq_con
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (left_inv f a) ⬝ p) : by rewrite adj
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite con.assoc
... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_compose
... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_inv
... = ap f ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) ⬝ p : by rewrite ap_con)))
definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g id) :=
begin
fapply is_trunc_equiv_closed,
{apply sigma_equiv_sigma_id, intro g, apply eq_equiv_homotopy},
fapply is_trunc_equiv_closed,
{apply fiber.sigma_char},
fapply is_contr_fiber_of_is_equiv,
apply (to_is_equiv (arrow_equiv_arrow_right (equiv.mk f H))),
end
definition is_contr_right_coherence (u : Σ(g : B → A), f ∘ g id)
: is_contr (Σ(η : u.1 ∘ f id), Π(a : A), u.2 (f a) = ap f (η a)) :=
begin
fapply is_trunc_equiv_closed,
{apply equiv.symm, apply sigma_pi_equiv_pi_sigma},
fapply is_trunc_equiv_closed,
{apply pi_equiv_pi_id, intro a,
apply (fiber_eq_equiv (fiber.mk (u.1 (f a)) (u.2 (f a))) (fiber.mk a idp))},
fapply is_trunc_pi,
intro a, fapply @is_contr_eq,
apply is_contr_fiber_of_is_equiv
end
variables {A B : Type} (f : A → B) [H : is_equiv f]
include H
/- is_equiv f is a mere proposition -/
definition is_contr_fiber_of_is_equiv [instance] (b : B) : is_contr (fiber f b) :=
is_contr.mk
(fiber.mk (f⁻¹ b) (right_inv f b))
(λz, fiber.rec_on z (λa p, fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) (calc
right_inv f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ right_inv f b) : by rewrite inv_con_cancel_left
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (right_inv f (f a) ⬝ p) : by rewrite ap_con_eq_con
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (left_inv f a) ⬝ p) : by rewrite adj
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite con.assoc
... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_compose
... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_inv
... = ap f ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) ⬝ p : by rewrite ap_con)))
definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g id) :=
begin
fapply is_trunc_equiv_closed,
{apply sigma_equiv_sigma_id, intro g, apply eq_equiv_homotopy},
fapply is_trunc_equiv_closed,
{apply fiber.sigma_char},
fapply is_contr_fiber_of_is_equiv,
apply (to_is_equiv (arrow_equiv_arrow_right (equiv.mk f H))),
end
variables {A B : Type} (f : A → B)
definition is_contr_right_coherence (u : Σ(g : B → A), f ∘ g id)
: is_contr (Σ(η : u.1 ∘ f id), Π(a : A), u.2 (f a) = ap f (η a)) :=
begin
fapply is_trunc_equiv_closed,
{apply equiv.symm, apply sigma_pi_equiv_pi_sigma},
fapply is_trunc_equiv_closed,
{apply pi_equiv_pi_id, intro a,
apply (fiber_eq_equiv (fiber.mk (u.1 (f a)) (u.2 (f a))) (fiber.mk a idp))},
end
omit H
protected definition sigma_char : (is_equiv f) ≃
(Σ(g : B → A) (ε : f ∘ g id) (η : g ∘ f id), Π(a : A), ε (f a) = ap f (η a)) :=
@ -80,21 +74,32 @@ namespace is_equiv
local attribute is_contr_right_inverse [instance] [priority 1600]
local attribute is_contr_right_coherence [instance] [priority 1600]
theorem is_hprop_is_equiv [instance] : is_hprop (is_equiv f) :=
is_hprop_of_imp_is_contr (λ(H : is_equiv f), is_trunc_equiv_closed -2 (equiv.symm !sigma_char'))
/- contractible fibers -/ -- TODO: uncomment this (needs to import instance is_hprop_is_trunc)
-- definition is_contr_fun [reducible] {A B : Type} (f : A → B) := Π(b : B), is_contr (fiber f b)
/- contractible fibers -/
definition is_contr_fun [reducible] (f : A → B) := Π(b : B), is_contr (fiber f b)
-- definition is_hprop_is_contr_fun (f : A → B) : is_hprop (is_contr_fun f) := _
definition is_contr_fun_of_is_equiv [H : is_equiv f] : is_contr_fun f :=
is_contr_fiber_of_is_equiv f
-- definition is_equiv_of_is_contr_fun [instance] [H : is_contr_fun f] : is_equiv f :=
-- adjointify _ (λb, point (center (fiber f b)))
-- (λb, point_eq (center (fiber f b)))
-- (λa, ap point (contr (fiber.mk a idp)))
definition is_hprop_is_contr_fun (f : A → B) : is_hprop (is_contr_fun f) := _
-- definition is_equiv_of_imp_is_equiv (H : B → is_equiv f) : is_equiv f :=
-- @is_equiv_of_is_contr_fun _ _ f (is_contr_fun.mk (λb, @is_contr_fiber_of_is_equiv _ _ _ (H b) _))
/-
we cannot make the next theorem an instance, because it loops together with
is_contr_fiber_of_is_equiv
-/
definition is_equiv_of_is_contr_fun [H : is_contr_fun f] : is_equiv f :=
adjointify _ (λb, point (center (fiber f b)))
(λb, point_eq (center (fiber f b)))
(λa, ap point (center_eq (fiber.mk a idp)))
definition is_equiv_of_imp_is_equiv (H : B → is_equiv f) : is_equiv f :=
@is_equiv_of_is_contr_fun _ _ f (λb, @is_contr_fiber_of_is_equiv _ _ _ (H b) _)
definition is_equiv_equiv_is_contr_fun : is_equiv f ≃ is_contr_fun f :=
equiv_of_is_hprop _ (λH, !is_equiv_of_is_contr_fun)
end is_equiv
@ -108,4 +113,32 @@ namespace equiv
definition equiv_eq {f f' : A ≃ B} (p : to_fun f = to_fun f') : f = f' :=
by (cases f; cases f'; apply (equiv_mk_eq p))
protected definition equiv.sigma_char (A B : Type) : (A ≃ B) ≃ Σ(f : A → B), is_equiv f :=
begin
fapply equiv.MK,
{intro F, exact ⟨to_fun F, to_is_equiv F⟩},
{intro p, cases p with [f, H], exact (equiv.mk f H)},
{intro p, cases p with [f, H], exact idp},
{intro F, cases F with [f, H], exact idp},
end
definition equiv_eq_char (f f' : A ≃ B) : (f = f') ≃ (to_fun f = to_fun f') :=
calc
(f = f') ≃ (to_fun !equiv.sigma_char f = to_fun !equiv.sigma_char f')
: eq_equiv_fn_eq (to_fun !equiv.sigma_char)
... ≃ ((to_fun !equiv.sigma_char f).1 = (to_fun !equiv.sigma_char f').1 ) : equiv_subtype
... ≃ (to_fun f = to_fun f') : equiv.refl
definition is_equiv_ap_to_fun (f f' : A ≃ B)
: is_equiv (ap to_fun : f = f' → to_fun f = to_fun f') :=
begin
fapply adjointify,
{intro p, cases f with [f, H], cases f' with [f', H'], cases p, apply (ap (mk f')), apply is_hprop.elim},
{intro p, cases f with [f, H], cases f' with [f', H'], cases p,
apply (@concat _ _ (ap to_fun (ap (equiv.mk f') (is_hprop.elim H H')))), {apply idp},
generalize (is_hprop.elim H H'), intro q, cases q, apply idp},
{intro p, cases p, cases f with [f, H], apply (ap (ap (equiv.mk f))), apply is_hset.elim}
end
end equiv

98
hott/types/function.hlean Normal file
View file

@ -0,0 +1,98 @@
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: types.function
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about embeddings and surjections
-/
import hit.trunc .pi .fiber .equiv
open equiv sigma sigma.ops eq trunc is_trunc pi is_equiv fiber prod
variables {A B : Type} {f : A → B} {b : B}
structure is_embedding [class] (f : A → B) :=
(elim : Π(a a' : A), is_equiv (@ap A B f a a'))
structure is_surjective [class] (f : A → B) :=
(elim : Π(b : B), ∥ fiber f b ∥)
structure is_split_surjective [class] (f : A → B) :=
(elim : Π(b : B), fiber f b)
structure is_retraction [class] (f : A → B) :=
(sect : B → A)
(right_inverse : Π(b : B), f (sect b) = b)
namespace function
attribute is_embedding.elim [instance]
definition is_surjective_rec_on {P : Type} (H : is_surjective f) (b : B) [Pt : is_hprop P]
(IH : fiber f b → P) : P :=
trunc.rec_on (is_surjective.elim f b) IH
definition is_surjective_of_is_split_surjective [instance] [H : is_split_surjective f]
: is_surjective f :=
is_surjective.mk (λb, tr (is_split_surjective.elim f b))
definition is_injective_of_is_embedding [reducible] [H : is_embedding f] {a a' : A}
: f a = f a' → a = a' :=
(ap f)⁻¹
definition is_embedding_of_is_injective [HA : is_hset A] [HB : is_hset B]
(H : Π(a a' : A), f a = f a' → a = a') : is_embedding f :=
begin
fapply is_embedding.mk,
intros [a, a'],
fapply adjointify,
{exact (H a a')},
{intro p, apply is_hset.elim},
{intro p, apply is_hset.elim}
end
definition is_hprop_is_embedding [instance] (f : A → B) : is_hprop (is_embedding f) :=
begin
have H : (Π(a a' : A), is_equiv (@ap A B f a a')) ≃ is_embedding f,
begin
fapply equiv.MK,
{exact is_embedding.mk},
{intro h, cases h, exact elim},
{intro h, cases h, apply idp},
{intro p, apply idp},
end,
apply is_trunc_equiv_closed,
exact H,
end
definition is_hprop_is_surjective [instance] (f : A → B) : is_hprop (is_surjective f) :=
begin
have H : (Π(b : B), merely (fiber f b)) ≃ is_surjective f,
begin
fapply equiv.MK,
{exact is_surjective.mk},
{intro h, cases h, exact elim},
{intro h, cases h, apply idp},
{intro p, apply idp},
end,
apply is_trunc_equiv_closed,
exact H,
end
definition is_embedding_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_embedding f :=
is_embedding.mk _
definition is_equiv_of_is_surjective_of_is_embedding (f : A → B)
[H : is_embedding f] [H' : is_surjective f] : is_equiv f :=
@is_equiv_of_is_contr_fun _ _ _
(λb, is_surjective_rec_on H' b
(λa, is_contr.mk a
(λa',
fiber_eq ((ap f)⁻¹ ((point_eq a) ⬝ (point_eq a')⁻¹))
(by rewrite (right_inv (ap f)); rewrite inv_con_cancel_right))))
end function

View file

@ -0,0 +1,63 @@
/-
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: types.hprop_trunc
Authors: Jakob von Raumer, Floris van Doorn
Proof of the theorem that (is_trunc n A) is a mere proposition
We prove this here to avoid circular dependency of files
We want to use this in .equiv; .equiv is imported by .function and .function is imported by .trunc
-/
import .pi
open equiv sigma sigma.ops eq function pi
namespace is_trunc
definition is_contr.sigma_char (A : Type) :
(Σ (center : A), Π (a : A), center = a) ≃ (is_contr A) :=
begin
fapply equiv.MK,
{ intro S, exact (is_contr.mk S.1 S.2)},
{ intro H, cases H with [H'], cases H' with [ce, co], exact ⟨ce, co⟩},
{ intro H, cases H with [H'], cases H' with [ce, co], exact idp},
{ intro S, cases S, apply idp}
end
definition is_trunc.pi_char (n : trunc_index) (A : Type) :
(Π (x y : A), is_trunc n (x = y)) ≃ (is_trunc (n .+1) A) :=
begin
fapply equiv.MK,
{ intro H, apply is_trunc_succ_intro},
{ intros [H, x, y], apply is_trunc_eq},
{ intro H, cases H, apply idp},
{ intro P, apply eq_of_homotopy, intro a, apply eq_of_homotopy, intro b,
esimp [function.id,compose,is_trunc_succ_intro,is_trunc_eq],
generalize (P a b), intro H, cases H, apply idp},
end
definition is_hprop_is_trunc [instance] (n : trunc_index) :
Π (A : Type), is_hprop (is_trunc n A) :=
begin
apply (trunc_index.rec_on n),
{ intro A,
apply is_trunc_is_equiv_closed,
{ apply equiv.to_is_equiv, apply is_contr.sigma_char},
apply (@is_hprop.mk), intros,
fapply sigma_eq, {apply x.2},
apply (@is_hprop.elim),
apply is_trunc_pi, intro a,
apply is_hprop.mk, intros [w, z],
have H : is_hset A,
begin
apply is_trunc_succ, apply is_trunc_succ,
apply is_contr.mk, exact y.2
end,
fapply (@is_hset.elim A _ _ _ w z)},
{ intros [n', IH, A],
apply is_trunc_is_equiv_closed,
apply equiv.to_is_equiv,
apply is_trunc.pi_char},
end
end is_trunc

View file

@ -3,75 +3,99 @@ Copyright (c) 2015 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: types.trunc
Authors: Jakob von Raumer, Floris van Doorn
Authors: Floris van Doorn
Properties of is_trunc
Properties of is_trunc and trunctype
-/
import types.pi types.eq
--NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .hprop_trunc
import types.pi types.eq types.equiv .function
open eq sigma sigma.ops pi function equiv is_trunc.trunctype is_equiv prod
open sigma sigma.ops pi function eq equiv eq funext
namespace is_trunc
variables {A B : Type} {n : trunc_index}
definition is_contr.sigma_char (A : Type) :
(Σ (center : A), Π (a : A), center = a) ≃ (is_contr A) :=
begin
fapply equiv.mk,
{intro S, apply is_contr.mk, exact S.2},
{fapply is_equiv.adjointify,
{intro H, apply sigma.mk, exact (@center_eq A H)},
{intro H, apply (is_trunc.rec_on H), intro Hint,
apply (contr_internal.rec_on Hint), intros [H1, H2],
apply idp},
{intro S, cases S, apply idp}}
end
definition is_trunc.pi_char (n : trunc_index) (A : Type) :
(Π (x y : A), is_trunc n (x = y)) ≃ (is_trunc (n .+1) A) :=
begin
fapply equiv.MK,
{intro H, apply is_trunc_succ_intro},
{intros [H, x, y], apply is_trunc_eq},
{intro H, apply (is_trunc.rec_on H), intro Hint, apply idp},
{intro P, apply eq_of_homotopy, intro a, apply eq_of_homotopy, intro b,
esimp [function.id,compose,is_trunc_succ_intro,is_trunc_eq],
generalize (P a b), intro H, apply (is_trunc.rec_on H), intro H', apply idp},
end
definition is_hprop_is_trunc [instance] (n : trunc_index) :
Π (A : Type), is_hprop (is_trunc n A) :=
begin
apply (trunc_index.rec_on n),
{intro A,
apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv,
apply is_contr.sigma_char,
apply (@is_hprop.mk), intros,
fapply sigma_eq, apply x.2,
apply (@is_hprop.elim),
apply is_trunc_pi, intro a,
apply is_hprop.mk, intros [w, z],
have H : is_hset A,
begin
apply is_trunc_succ, apply is_trunc_succ,
apply is_contr.mk, exact y.2
end,
fapply (@is_hset.elim A _ _ _ w z)},
{intros [n', IH, A],
apply is_trunc_is_equiv_closed,
apply equiv.to_is_equiv,
apply is_trunc.pi_char},
end
definition is_trunc_succ_of_imp_is_trunc_succ {A : Type} {n : trunc_index} (H : A → is_trunc (n.+1) A)
: is_trunc (n.+1) A :=
definition is_trunc_succ_of_imp_is_trunc_succ (H : A → is_trunc (n.+1) A) : is_trunc (n.+1) A :=
@is_trunc_succ_intro _ _ (λx y, @is_trunc_eq _ _ (H x) x y)
definition is_trunc_of_imp_is_trunc_of_leq {A : Type} {n : trunc_index} (Hn : -1 ≤ n)
(H : A → is_trunc n A) : is_trunc n A :=
definition is_trunc_of_imp_is_trunc_of_leq (Hn : -1 ≤ n) (H : A → is_trunc n A) : is_trunc n A :=
trunc_index.rec_on n (λHn H, empty.rec _ Hn)
(λn IH Hn, is_trunc_succ_of_imp_is_trunc_succ)
Hn H
/- theorems about trunctype -/
protected definition trunctype.sigma_char.{l} (n : trunc_index) :
(trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) :=
begin
fapply equiv.MK,
{ intro A, exact (⟨carrier A, struct A⟩)},
{ intro S, exact (trunctype.mk S.1 S.2)},
{ intro S, apply (sigma.rec_on S), intros [S1, S2], apply idp},
{ intro A, apply (trunctype.rec_on A), intros [A1, A2], apply idp},
end
definition trunctype_eq_equiv (n : trunc_index) (A B : n-Type) :
(A = B) ≃ (carrier A = carrier B) :=
calc
(A = B) ≃ (to_fun (trunctype.sigma_char n) A = to_fun (trunctype.sigma_char n) B)
: eq_equiv_fn_eq_of_equiv
... ≃ ((to_fun (trunctype.sigma_char n) A).1 = (to_fun (trunctype.sigma_char n) B).1)
: equiv.symm (!equiv_subtype)
... ≃ (carrier A = carrier B) : equiv.refl
definition is_trunc_is_embedding_closed (f : A → B) [Hf : is_embedding f] [HB : is_trunc n B]
(Hn : -1 ≤ n) : is_trunc n A :=
begin
cases n with [n],
{exact (!empty.elim Hn)},
{apply is_trunc_succ_intro, intros [a, a'],
fapply (@is_trunc_is_equiv_closed_rev _ _ n (ap f))}
end
definition is_trunc_is_retraction_closed (f : A → B) [Hf : is_retraction f]
(n : trunc_index) [HA : is_trunc n A] : is_trunc n B :=
begin
reverts [A, B, f, Hf, HA],
apply (trunc_index.rec_on n),
{ clear n, intros [A, B, f, Hf, HA], cases Hf with [g, ε], fapply is_contr.mk,
{ exact (f (center A))},
{ intro b, apply concat,
{ apply (ap f), exact (center_eq (g b))},
{ apply ε}}},
{ clear n, intros [n, IH, A, B, f, Hf, HA], cases Hf with [g, ε],
apply is_trunc_succ_intro, intros [b, b'],
fapply (IH (g b = g b')),
{ intro q, exact ((ε b)⁻¹ ⬝ ap f q ⬝ ε b')},
{ apply (is_retraction.mk (ap g)),
{ intro p, cases p, {rewrite [↑ap, con_idp, con.left_inv]}}},
{ apply is_trunc_eq}}
end
definition is_embedding_to_fun (A B : Type) : is_embedding (@to_fun A B) :=
is_embedding.mk (λf f', !is_equiv_ap_to_fun)
definition is_trunc_trunctype [instance] (n : trunc_index) : is_trunc n.+1 (n-Type) :=
begin
apply is_trunc_succ_intro, intros [X, Y],
fapply is_trunc_equiv_closed,
{apply equiv.symm, apply trunctype_eq_equiv},
fapply is_trunc_equiv_closed,
{apply equiv.symm, apply eq_equiv_equiv},
cases n,
{apply @is_contr_of_inhabited_hprop,
{apply is_trunc_is_embedding_closed,
{apply is_embedding_to_fun} ,
{exact unit.star}},
{apply equiv_of_is_contr_of_is_contr}},
{apply is_trunc_is_embedding_closed,
{apply is_embedding_to_fun},
{exact unit.star}}
end
/- theorems about decidable equality and axiom K -/
definition is_hset_of_axiom_K {A : Type} (K : Π{a : A} (p : a = a), p = idp) : is_hset A :=
is_hset.mk _ (λa b p q, eq.rec_on q K p)
@ -116,24 +140,62 @@ namespace is_trunc
(K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A :=
@is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_leq H (λp, eq.rec_on p !K))
open trunctype equiv equiv.ops
end is_trunc open is_trunc
protected definition trunctype.sigma_char.{l} (n : trunc_index) :
(trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) :=
namespace trunc
variable {A : Type}
definition trunc_eq_type (n : trunc_index) (aa aa' : trunc n.+1 A) : n-Type :=
trunc.rec_on aa (λa, trunc.rec_on aa' (λa', trunctype.mk' n (trunc n (a = a'))))
definition trunc_eq_equiv (n : trunc_index) (aa aa' : trunc n.+1 A)
: aa = aa' ≃ trunc_eq_type n aa aa' :=
begin
fapply equiv.MK,
/--/ intro A, exact (⟨carrier A, struct A⟩),
/--/ intro S, exact (trunctype.mk S.1 S.2),
/--/ intro S, apply (sigma.rec_on S), intros [S1, S2], apply idp,
intro A, apply (trunctype.rec_on A), intros [A1, A2], apply idp,
{ intro p, cases p, apply (trunc.rec_on aa),
intro a, esimp [trunc_eq_type,trunc.rec_on], exact (tr idp)},
{ apply (trunc.rec_on aa'), apply (trunc.rec_on aa),
intros [a, a', x], esimp [trunc_eq_type, trunc.rec_on] at x,
apply (trunc.rec_on x), intro p, exact (ap tr p)},
{
-- apply (trunc.rec_on aa'), apply (trunc.rec_on aa),
-- intros [a, a', x], esimp [trunc_eq_type, trunc.rec_on] at x,
-- apply (trunc.rec_on x), intro p,
-- cases p, esimp [trunc.rec_on,eq.cases_on,compose,id], -- apply idp --?
apply sorry},
{ intro p, cases p, apply (trunc.rec_on aa), intro a, apply sorry},
end
protected definition trunctype_eq_equiv (n : trunc_index) (A B : n-Type) :
(A = B) ≃ (carrier A = carrier B) :=
calc
(A = B) ≃ (trunctype.sigma_char n A = trunctype.sigma_char n B) : eq_equiv_fn_eq_of_equiv
... ≃ ((trunctype.sigma_char n A).1 = (trunctype.sigma_char n B).1) : equiv.symm (!equiv_subtype)
... ≃ (carrier A = carrier B) : equiv.refl
definition tr_eq_tr_equiv (n : trunc_index) (a a' : A)
: (tr a = tr a' :> trunc n.+1 A) ≃ trunc n (a = a') :=
!trunc_eq_equiv
definition is_trunc_trunc_of_is_trunc [instance] [priority 500] (A : Type)
(n m : trunc_index) [H : is_trunc n A] : is_trunc n (trunc m A) :=
begin
reverts [A, m, H], apply (trunc_index.rec_on n),
{ clear n, intros [A, m, H], apply is_contr_equiv_closed,
{ apply equiv_trunc, apply (@is_trunc_of_leq _ -2), exact unit.star} },
{ clear n, intros [n, IH, A, m, H], cases m with [m],
{ apply (@is_trunc_of_leq _ -2), exact unit.star},
{ apply is_trunc_succ_intro, intros [aa, aa'],
apply (@trunc.rec_on _ _ _ aa (λy, !is_trunc_succ_of_is_hprop)),
apply (@trunc.rec_on _ _ _ aa' (λy, !is_trunc_succ_of_is_hprop)),
intros [a, a'], apply (is_trunc_equiv_closed_rev),
{ apply tr_eq_tr_equiv},
{ exact (IH _ _ _)}}}
end
end is_trunc
end trunc open trunc
namespace function
variables {A B : Type}
definition is_surjective_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_surjective f :=
is_surjective.mk (λb, !center)
definition is_equiv_equiv_is_embedding_times_is_surjective (f : A → B)
: is_equiv f ≃ (is_embedding f × is_surjective f) :=
equiv_of_is_hprop (λH, (_, _))
(λP, prod.rec_on P (λH₁ H₂, !is_equiv_of_is_surjective_of_is_embedding))
end function

View file

@ -3,13 +3,16 @@ hott.types
Various datatypes.
* [prod](prod.hlean)
* [sigma](sigma.hlean)
* [pi](pi.hlean)
* [arrow](arrow.hlean)
* [eq](eq.hlean)
* [trunc](trunc.hlean)
* [prod](prod.hlean)
* [sigma](sigma.hlean)
* [fiber](fiber.hlean)
* [hprop_trunc](hprop_trunc.hlean): in this file we prove that `is_trunc n A` is a mere proposition. We separate this from [trunc](trunc.hlean) to avoid circularity in imports.
* [equiv](equiv.hlean)
* [pointed](pointed.hlean)
* [trunc](trunc.hlean)
* [W](W.hlean) (not loaded by default)