fix(tests/lean): adjust tests to reflect changes in the elaboration process
This commit is contained in:
parent
de90926eed
commit
2aa64034df
5 changed files with 4 additions and 21 deletions
|
@ -134,18 +134,4 @@ parameters {TL BL TR : Type.{u}} (f : TL → BL) (g : TL → TR)
|
|||
}
|
||||
end
|
||||
|
||||
example
|
||||
{P : pushout → Type}
|
||||
{Pinl : Π (x : BL), P (inl x)}
|
||||
{Pinr : Π (x : TR), P (inr x)}
|
||||
{Pglue : Π (x : TL), eq (transport (λ (x : pushout), P x) (glue x) (Pinl (f x))) (Pinr (g x))}
|
||||
{y : pushout}
|
||||
{x : @ob _ (@dom _ tt)}
|
||||
: eq (transport (λ (x : pushout), P x) (inverse (coherence x)) (transport P (@cglue _ tt x) (Pinr (g x))))
|
||||
(Pinl (f x)) :=
|
||||
begin
|
||||
rewrite -{(transport (λ (x : pushout), P x) (inverse (coherence x)) (transport P (@cglue _ tt x) (Pinr (g x))))}con_tr,
|
||||
apply sorry
|
||||
end
|
||||
|
||||
exit
|
||||
|
|
|
@ -1 +1 @@
|
|||
531.hlean:151:0: warning: using 'exit' to interrupt Lean
|
||||
531.hlean:137:0: warning: using 'exit' to interrupt Lean
|
||||
|
|
|
@ -7,9 +7,7 @@ definition path_sigma_dpair (p : a = a') (q : p ▸ b = b') : sigma.mk a b = sig
|
|||
eq.rec_on p (λb b' q, eq.rec_on q idp) b b' q
|
||||
|
||||
definition path_sigma (p : pr1 u = pr1 v) (q : p ▸ pr2 u = pr2 v) : u = v :=
|
||||
destruct u
|
||||
(λu1 u2, destruct v (λ v1 v2, path_sigma_dpair))
|
||||
p q
|
||||
begin cases u, cases v, apply path_sigma_dpair p q end
|
||||
|
||||
definition path_path_sigma_lemma' {p1 : a = a'} {p2 : p1 ▸ b = b'} {q2 : p1 ▸ b = b'}
|
||||
(s : idp ▸ p2 = q2) : path_sigma p1 p2 = path_sigma p1 q2 :=
|
||||
|
|
|
@ -16,5 +16,5 @@ protected definition my_decode {x : circle} : my_code x → base = x :=
|
|||
induction x,
|
||||
{ exact power loop},
|
||||
{ apply arrow_pathover_left, intro b, apply concato_eq, apply pathover_eq_r,
|
||||
rewrite [power_con,transport_code_loop]},
|
||||
xrewrite [power_con, transport_code_loop]},
|
||||
end
|
||||
|
|
|
@ -29,8 +29,7 @@ theorem g_succ (a : nat) : g (succ a) = g (g a) :=
|
|||
have aux : well_founded.fix g.F (succ a) = sigma.mk (g (g a)) _, from
|
||||
well_founded.fix_eq g.F (succ a),
|
||||
calc g (succ a) = pr₁ (well_founded.fix g.F (succ a)) : rfl
|
||||
... = pr₁ (sigma.mk (g (g a)) _) : {aux}
|
||||
... = g (g a) : rfl
|
||||
... = g (g a) : {aux}
|
||||
|
||||
theorem g_all_zero (a : nat) : g a = zero :=
|
||||
nat.induction_on a
|
||||
|
|
Loading…
Reference in a new issue