fix(groupoid): redefine groupoid given by a group
The composition was in the reverse order
This commit is contained in:
parent
1135d80266
commit
2afdaf6906
1 changed files with 16 additions and 13 deletions
|
@ -6,7 +6,7 @@ Authors: Jakob von Raumer, Floris van Doorn
|
|||
Ported from Coq HoTT
|
||||
-/
|
||||
|
||||
import .iso algebra.group
|
||||
import .iso algebra.bundled
|
||||
|
||||
open eq is_trunc iso category algebra nat unit
|
||||
|
||||
|
@ -22,21 +22,22 @@ namespace category
|
|||
(H : Π (a b : ob) (f : a ⟶ b), is_iso f) : groupoid ob :=
|
||||
precategory.rec_on C groupoid.mk' H
|
||||
|
||||
-- We can turn each group into a groupoid on the unit type
|
||||
definition groupoid_of_group.{l} [constructor] (A : Type.{l}) [G : group A] :
|
||||
groupoid.{0 l} unit :=
|
||||
begin
|
||||
fapply groupoid.mk, fapply precategory.mk,
|
||||
intros, exact A,
|
||||
intros, apply (@group.is_set_carrier A G),
|
||||
intros a b c g h, exact (@group.mul A G g h),
|
||||
intro a, exact (@group.one A G),
|
||||
intros, exact (@group.mul_assoc A G h g f)⁻¹,
|
||||
intros, exact (@group.one_mul A G f),
|
||||
intros, exact (@group.mul_one A G f),
|
||||
intros, esimp [precategory.mk], apply is_iso.mk,
|
||||
apply mul.left_inv,
|
||||
apply mul.right_inv,
|
||||
fapply groupoid.mk; fapply precategory.mk: intros,
|
||||
{ exact A},
|
||||
{ exact _},
|
||||
{ exact a_2 * a_1},
|
||||
{ exact 1},
|
||||
{ apply mul.assoc},
|
||||
{ apply mul_one},
|
||||
{ apply one_mul},
|
||||
{ esimp [precategory.mk],
|
||||
fapply is_iso.mk,
|
||||
{ exact f⁻¹},
|
||||
{ apply mul.right_inv},
|
||||
{ apply mul.left_inv}},
|
||||
end
|
||||
|
||||
definition hom_group [constructor] {A : Type} [G : groupoid A] (a : A) : group (hom a a) :=
|
||||
|
@ -78,5 +79,7 @@ namespace category
|
|||
definition Groupoid.eta [unfold 1] (C : Groupoid) : Groupoid.mk C C = C :=
|
||||
Groupoid.rec (λob c, idp) C
|
||||
|
||||
definition Groupoid_of_Group [constructor] (G : Group) : Groupoid :=
|
||||
Groupoid.mk unit (groupoid_of_group G)
|
||||
|
||||
end category
|
||||
|
|
Loading…
Reference in a new issue