refactor(library/blast/unit): simplify module
This commit is contained in:
parent
61db311227
commit
2bf9989bd9
15 changed files with 342 additions and 216 deletions
|
@ -27,6 +27,8 @@ false.rec b (H2 H1)
|
||||||
theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a :=
|
theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a :=
|
||||||
assume Ha : a, absurd (H1 Ha) H2
|
assume Ha : a, absurd (H1 Ha) H2
|
||||||
|
|
||||||
|
definition implies.resolve {a b : Prop} (H : a → b) (nb : ¬ b) : ¬ a := assume Ha, nb (H Ha)
|
||||||
|
|
||||||
/- not -/
|
/- not -/
|
||||||
|
|
||||||
theorem not_false : ¬false :=
|
theorem not_false : ¬false :=
|
||||||
|
@ -37,6 +39,8 @@ definition non_contradictory (a : Prop) : Prop := ¬¬a
|
||||||
theorem non_contradictory_intro {a : Prop} (Ha : a) : ¬¬a :=
|
theorem non_contradictory_intro {a : Prop} (Ha : a) : ¬¬a :=
|
||||||
assume Hna : ¬a, absurd Ha Hna
|
assume Hna : ¬a, absurd Ha Hna
|
||||||
|
|
||||||
|
definition not.wrap {a : Prop} (na : a → false) : ¬ a := na
|
||||||
|
|
||||||
/- false -/
|
/- false -/
|
||||||
|
|
||||||
theorem false.elim {c : Prop} (H : false) : c :=
|
theorem false.elim {c : Prop} (H : false) : c :=
|
||||||
|
@ -459,6 +463,20 @@ iff.trans or.comm !or_false
|
||||||
theorem or_self [simp] (a : Prop) : a ∨ a ↔ a :=
|
theorem or_self [simp] (a : Prop) : a ∨ a ↔ a :=
|
||||||
iff.intro (or.rec id id) or.inl
|
iff.intro (or.rec id id) or.inl
|
||||||
|
|
||||||
|
/- or resolution rulse -/
|
||||||
|
|
||||||
|
definition or.resolve_left {a b : Prop} (H : a ∨ b) (na : ¬ a) : b :=
|
||||||
|
or.elim H (λ Ha, absurd Ha na) id
|
||||||
|
|
||||||
|
definition or.neg_resolve_left {a b : Prop} (H : ¬ a ∨ b) (Ha : a) : b :=
|
||||||
|
or.elim H (λ na, absurd Ha na) id
|
||||||
|
|
||||||
|
definition or.resolve_right {a b : Prop} (H : a ∨ b) (nb : ¬ b) : a :=
|
||||||
|
or.elim H id (λ Hb, absurd Hb nb)
|
||||||
|
|
||||||
|
definition or.neg_resolve_right {a b : Prop} (H : a ∨ ¬ b) (Hb : b) : a :=
|
||||||
|
or.elim H id (λ nb, absurd Hb nb)
|
||||||
|
|
||||||
/- iff simp rules -/
|
/- iff simp rules -/
|
||||||
|
|
||||||
theorem iff_true [simp] (a : Prop) : (a ↔ true) ↔ a :=
|
theorem iff_true [simp] (a : Prop) : (a ↔ true) ↔ a :=
|
||||||
|
|
|
@ -21,123 +21,88 @@ Author: Daniel Selsam
|
||||||
namespace lean {
|
namespace lean {
|
||||||
namespace blast {
|
namespace blast {
|
||||||
|
|
||||||
|
bool is_lemma(expr const & _type) {
|
||||||
|
expr type = _type;
|
||||||
|
bool has_antecedent = false;
|
||||||
|
if (!is_prop(type)) return false;
|
||||||
|
while (is_pi(type) && closed(binding_body(type))) {
|
||||||
|
has_antecedent = true;
|
||||||
|
type = binding_body(type);
|
||||||
|
}
|
||||||
|
if (has_antecedent && !is_pi(type)) return true;
|
||||||
|
else if (is_or(type)) return true;
|
||||||
|
else return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool is_fact(expr const & type) {
|
||||||
|
return is_prop(type) && !is_pi(type) && !is_or(type);
|
||||||
|
}
|
||||||
|
|
||||||
|
expr flip(expr const & e) {
|
||||||
|
expr not_e;
|
||||||
|
if (!blast::is_not(e, not_e)) not_e = get_app_builder().mk_not(e);
|
||||||
|
return not_e;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool is_not(expr const & e) {
|
||||||
|
expr not_e;
|
||||||
|
return blast::is_not(e, not_e);
|
||||||
|
}
|
||||||
|
|
||||||
static unsigned g_ext_id = 0;
|
static unsigned g_ext_id = 0;
|
||||||
struct unit_branch_extension : public branch_extension {
|
struct unit_branch_extension : public branch_extension {
|
||||||
rb_multi_map<expr, hypothesis_idx, expr_quick_cmp> m_lemma_map;
|
/* We map each lemma to the two facts that it is watching. */
|
||||||
rb_map<expr, hypothesis_idx, expr_quick_cmp> m_fact_map;
|
rb_multi_map<hypothesis_idx, expr, unsigned_cmp> m_lemmas_to_facts;
|
||||||
|
|
||||||
|
/* We map each fact back to the lemma hypotheses that are watching it. */
|
||||||
|
rb_multi_map<expr, hypothesis_idx, expr_quick_cmp> m_facts_to_lemmas;
|
||||||
|
|
||||||
|
/* We map each fact expression to its hypothesis. */
|
||||||
|
rb_map<expr, hypothesis_idx, expr_quick_cmp> m_facts;
|
||||||
|
|
||||||
unit_branch_extension() {}
|
unit_branch_extension() {}
|
||||||
unit_branch_extension(unit_branch_extension const & b):
|
unit_branch_extension(unit_branch_extension const & b):
|
||||||
m_lemma_map(b.m_lemma_map), m_fact_map(b.m_fact_map) {}
|
m_lemmas_to_facts(b.m_lemmas_to_facts),
|
||||||
|
m_facts_to_lemmas(b.m_facts_to_lemmas),
|
||||||
|
m_facts(b.m_facts) {}
|
||||||
virtual ~unit_branch_extension() {}
|
virtual ~unit_branch_extension() {}
|
||||||
virtual branch_extension * clone() override { return new unit_branch_extension(*this); }
|
virtual branch_extension * clone() override { return new unit_branch_extension(*this); }
|
||||||
|
|
||||||
void insert(expr const & e, hypothesis_idx hidx, bool neg) {
|
|
||||||
expr A, B;
|
|
||||||
if (is_or(e, A, B)) {
|
|
||||||
lean_assert(!neg);
|
|
||||||
insert(A, hidx, neg);
|
|
||||||
insert(B, hidx, neg);
|
|
||||||
} else if (is_and(e, A, B)) {
|
|
||||||
lean_assert(neg);
|
|
||||||
insert(A, hidx, neg);
|
|
||||||
insert(B, hidx, neg);
|
|
||||||
} else if (neg) {
|
|
||||||
expr not_e;
|
|
||||||
if (blast::is_not(e, not_e)) m_lemma_map.insert(not_e, hidx);
|
|
||||||
else m_lemma_map.insert(get_app_builder().mk_not(e), hidx);
|
|
||||||
} else {
|
|
||||||
m_lemma_map.insert(e, hidx);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void hypothesis_activated(hypothesis const & h, hypothesis_idx hidx) override {
|
virtual void hypothesis_activated(hypothesis const & h, hypothesis_idx hidx) override {
|
||||||
expr type = whnf(h.get_type());
|
if (is_fact(h.get_type())) m_facts.insert(h.get_type(), hidx);
|
||||||
if (!is_pi(type)) {
|
|
||||||
if (is_prop(type)) m_fact_map.insert(type, hidx);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
bool has_antecedent = false;
|
|
||||||
while (is_pi(type) && is_prop(binding_domain(type)) && closed(binding_body(type))) {
|
|
||||||
has_antecedent = true;
|
|
||||||
insert(binding_domain(type), hidx, false);
|
|
||||||
type = binding_body(type);
|
|
||||||
}
|
|
||||||
if (has_antecedent && is_prop(type)) {
|
|
||||||
insert(type, hidx, true);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
virtual void hypothesis_deleted(hypothesis const & h, hypothesis_idx hidx) override {
|
||||||
virtual void hypothesis_deleted(hypothesis const & , hypothesis_idx ) override {
|
if (is_lemma(h.get_type())) {
|
||||||
/* We discard opportunistically when we encounter a hypothesis that is dead. */
|
list<expr> const * facts = find_facts_watching_lemma(hidx);
|
||||||
|
if (facts) {
|
||||||
|
for_each(*facts, [&](expr const & fact) {
|
||||||
|
unwatch(hidx, fact);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
} else if (is_fact(h.get_type())) {
|
||||||
|
m_facts.erase(h.get_type());
|
||||||
|
lean_assert(!find_lemmas_watching_fact(h.get_type()));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
public:
|
public:
|
||||||
list<hypothesis_idx> const * find_lemmas(expr const & e) { return m_lemma_map.find(e); }
|
list<hypothesis_idx> const * find_lemmas_watching_fact(expr const & fact_type) {
|
||||||
template<typename P> void filter_lemmas(expr const & e, P && p) { return m_lemma_map.filter(e, p); }
|
return m_facts_to_lemmas.find(fact_type);
|
||||||
hypothesis_idx const * find_fact(expr const & e) { return m_fact_map.find(e); }
|
|
||||||
void erase_fact(expr const & e) { return m_fact_map.erase(e); }
|
|
||||||
|
|
||||||
/* Returns a proof of the disjunction [e] */
|
|
||||||
optional<expr> find_live_fact_in_disjunction(expr const & e) {
|
|
||||||
expr A, B;
|
|
||||||
if (is_or(e, A, B)) {
|
|
||||||
if (auto A_fact = find_live_fact_in_disjunction(A)) {
|
|
||||||
return some_expr(get_app_builder().mk_app(get_or_intro_left_name(), {A, B, *A_fact}));
|
|
||||||
} else if (auto B_fact = find_live_fact_in_disjunction(B)) {
|
|
||||||
return some_expr(get_app_builder().mk_app(get_or_intro_right_name(), {A, B, *B_fact}));
|
|
||||||
} else {
|
|
||||||
return none_expr();
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
hypothesis_idx const * fact_hidx = find_fact(e);
|
|
||||||
if (fact_hidx) {
|
|
||||||
hypothesis const & fact_h = curr_state().get_hypothesis_decl(*fact_hidx);
|
|
||||||
if (fact_h.is_dead()) {
|
|
||||||
erase_fact(e);
|
|
||||||
return none_expr();
|
|
||||||
} else {
|
|
||||||
return some_expr(fact_h.get_self());
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
return none_expr();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
list<expr> const * find_facts_watching_lemma(hypothesis_idx lemma_hidx) {
|
||||||
/* Returns a proof of [false], by either applying a projection of [proof] to a hypothesis or vice versa. */
|
return m_lemmas_to_facts.find(lemma_hidx);
|
||||||
optional<expr> find_live_disproof_of_conjunction(expr const & e, expr const & proof) {
|
}
|
||||||
expr A, B;
|
void unwatch(hypothesis_idx lemma_hidx, expr const & fact_type) {
|
||||||
if (is_and(e, A, B)) {
|
m_lemmas_to_facts.filter(lemma_hidx, [&](expr const & fact_type2) {
|
||||||
if (auto A_false = find_live_disproof_of_conjunction(A, get_app_builder().mk_app(get_and_elim_left_name(), {A, B, proof}))) {
|
return fact_type != fact_type2;
|
||||||
return some_expr(*A_false);
|
});
|
||||||
} else if (auto B_false = find_live_disproof_of_conjunction(B, get_app_builder().mk_app(get_and_elim_right_name(), {A, B, proof}))) {
|
m_facts_to_lemmas.erase(fact_type, lemma_hidx);
|
||||||
return some_expr(*B_false);
|
}
|
||||||
} else {
|
hypothesis_idx const * find_fact(expr const & fact_type) {
|
||||||
return none_expr();
|
return m_facts.find(fact_type);
|
||||||
}
|
}
|
||||||
} else {
|
void watch(hypothesis_idx lemma_hidx, expr const & fact_type) {
|
||||||
expr not_e;
|
m_lemmas_to_facts.insert(lemma_hidx, fact_type);
|
||||||
bool not_e_is_not = false;
|
m_facts_to_lemmas.insert(fact_type, lemma_hidx);
|
||||||
if (!blast::is_not(e, not_e)) {
|
|
||||||
not_e_is_not = true;
|
|
||||||
not_e = get_app_builder().mk_not(e);
|
|
||||||
}
|
|
||||||
|
|
||||||
hypothesis_idx const * fact_hidx = find_fact(not_e);
|
|
||||||
if (fact_hidx) {
|
|
||||||
hypothesis const & fact_h = curr_state().get_hypothesis_decl(*fact_hidx);
|
|
||||||
if (fact_h.is_dead()) {
|
|
||||||
erase_fact(e);
|
|
||||||
return none_expr();
|
|
||||||
} else {
|
|
||||||
if (not_e_is_not) return some_expr(mk_app(fact_h.get_self(), proof));
|
|
||||||
else return some_expr(mk_app(proof, fact_h.get_self()));
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
return none_expr();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -151,72 +116,178 @@ static unit_branch_extension & get_extension() {
|
||||||
return static_cast<unit_branch_extension&>(curr_state().get_extension(g_ext_id));
|
return static_cast<unit_branch_extension&>(curr_state().get_extension(g_ext_id));
|
||||||
}
|
}
|
||||||
|
|
||||||
action_result unit_pi(expr const & _type, expr const & proof) {
|
/* Recall the general form of the lemmas we handle in this module:
|
||||||
unit_branch_extension & ext = get_extension();
|
A_1 -> ... -> A_n -> B_1 \/ (B2 \/ ... \/ B_m)...)
|
||||||
bool missing_argument = false;
|
|
||||||
bool has_antecedent = false;
|
|
||||||
expr type = _type;
|
|
||||||
expr new_hypothesis = proof;
|
|
||||||
expr local;
|
|
||||||
|
|
||||||
while (is_pi(type) && is_prop(binding_domain(type)) && closed(binding_body(type))) {
|
There are three different scenarios in which we propagate:
|
||||||
has_antecedent = true;
|
(1) We have all of the A_i, and the negations of all but the last B_j.
|
||||||
optional<expr> fact = ext.find_live_fact_in_disjunction(binding_domain(type));
|
(2) We are missing an A_i.
|
||||||
if (fact) {
|
(3) We are missing a B_j.
|
||||||
new_hypothesis = mk_app(new_hypothesis, *fact);
|
|
||||||
} else {
|
The first thing we do is check whether or not we are able to propagate.
|
||||||
if (missing_argument) return action_result::failed();
|
If so, we start instantiating the A_i. If we hit a missing literal,
|
||||||
local = mk_fresh_local(binding_domain(type));
|
we store the proof so far, create a local for the consequent, prove false,
|
||||||
new_hypothesis = mk_app(new_hypothesis, local);
|
and then conclude with [lemma imp_right : (A → B) → ¬ B → ¬ A].
|
||||||
missing_argument = true;
|
|
||||||
|
If we instantiate all the A_i, we start using [lemma or_resolve_left : A ∨ B → ¬ A → B]
|
||||||
|
to cross of the B_j. If we have all but the last one, we simply return the resulting proof.
|
||||||
|
|
||||||
|
If we are missing a B_j, we store the proof so far, create a local for the right-hand-side of
|
||||||
|
the disjunct, prove false, and then conclude with [lemma or_resolve_right : A ∨ B → ¬ B → A].
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
bool can_propagate(expr const & _type, buffer<expr, 2> & to_watch) {
|
||||||
|
lean_assert(is_lemma(_type));
|
||||||
|
expr type = _type;
|
||||||
|
unsigned num_watching = 0;
|
||||||
|
unit_branch_extension & ext = get_extension();
|
||||||
|
|
||||||
|
/* Traverse the A_i */
|
||||||
|
while (is_pi(type) && closed(binding_body(type))) {
|
||||||
|
expr arg;
|
||||||
|
hypothesis_idx const * fact_hidx = ext.find_fact(binding_domain(type));
|
||||||
|
if (!fact_hidx) {
|
||||||
|
to_watch.push_back(binding_domain(type));
|
||||||
|
num_watching++;
|
||||||
|
if (num_watching == 2) return false;
|
||||||
}
|
}
|
||||||
type = binding_body(type);
|
type = binding_body(type);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!has_antecedent) {
|
/* Traverse the B_j */
|
||||||
return action_result::failed();
|
expr lhs, rhs;
|
||||||
} else if (!missing_argument) {
|
while (is_or(type, lhs, rhs)) {
|
||||||
curr_state().mk_hypothesis(type, new_hypothesis);
|
hypothesis_idx const * fact_hidx = ext.find_fact(flip(lhs));
|
||||||
return action_result::new_branch();
|
if (!fact_hidx) {
|
||||||
} else if (is_prop(type)) {
|
to_watch.push_back(flip(lhs));
|
||||||
optional<expr> disproof = ext.find_live_disproof_of_conjunction(type, new_hypothesis);
|
num_watching++;
|
||||||
if (disproof) {
|
if (num_watching == 2) return false;
|
||||||
curr_state().mk_hypothesis(get_app_builder().mk_not(infer_type(local)),
|
|
||||||
Fun(local, *disproof));
|
|
||||||
return action_result::new_branch();
|
|
||||||
} else {
|
|
||||||
return action_result::failed();
|
|
||||||
}
|
}
|
||||||
} else {
|
type = rhs;
|
||||||
|
}
|
||||||
|
|
||||||
|
hypothesis_idx const * fact_hidx = ext.find_fact(flip(type));
|
||||||
|
if (!fact_hidx) {
|
||||||
|
to_watch.push_back(flip(type));
|
||||||
|
num_watching++;
|
||||||
|
if (num_watching == 2) return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
action_result unit_lemma(hypothesis_idx hidx, expr const & _type, expr const & _proof) {
|
||||||
|
lean_assert(is_lemma(_type));
|
||||||
|
unit_branch_extension & ext = get_extension();
|
||||||
|
|
||||||
|
/* (1) Find the facts that are watching this lemma and clear them. */
|
||||||
|
list<expr> const * watching = ext.find_facts_watching_lemma(hidx);
|
||||||
|
if (watching) {
|
||||||
|
lean_assert(length(*watching) == 2);
|
||||||
|
// TODO(dhs): is it safe to remove from these lists while I am iterating them with [for_each]?
|
||||||
|
for_each(*watching, [&](expr const & fact) { ext.unwatch(hidx, fact); });
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (2) Check if we can propagate */
|
||||||
|
buffer<expr, 2> to_watch;
|
||||||
|
if (!can_propagate(_type, to_watch)) {
|
||||||
|
for (expr const & e : to_watch) ext.watch(hidx, e);
|
||||||
return action_result::failed();
|
return action_result::failed();
|
||||||
}
|
}
|
||||||
lean_unreachable();
|
|
||||||
|
expr type = _type;
|
||||||
|
expr proof = _proof;
|
||||||
|
expr final_type;
|
||||||
|
expr proof_left;
|
||||||
|
expr proof_init_right;
|
||||||
|
expr type_init_right;
|
||||||
|
bool missing_A = false;
|
||||||
|
bool missing_B = false;
|
||||||
|
|
||||||
|
/* (3) Traverse the binding domains */
|
||||||
|
while (is_pi(type) && closed(binding_body(type))) {
|
||||||
|
hypothesis_idx const * fact_hidx = ext.find_fact(binding_domain(type));
|
||||||
|
if (fact_hidx) {
|
||||||
|
proof = mk_app(proof, curr_state().get_hypothesis_decl(*fact_hidx).get_self());
|
||||||
|
} else {
|
||||||
|
lean_assert(!missing_A);
|
||||||
|
missing_A = true;
|
||||||
|
final_type = get_app_builder().mk_not(binding_domain(type));
|
||||||
|
proof_left = proof;
|
||||||
|
type_init_right = binding_body(type);
|
||||||
|
proof_init_right = mk_fresh_local(type_init_right);
|
||||||
|
proof = proof_init_right;
|
||||||
|
}
|
||||||
|
type = binding_body(type);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* (4) Traverse the conclusion */
|
||||||
|
expr lhs, rhs;
|
||||||
|
while (is_or(type, lhs, rhs)) {
|
||||||
|
hypothesis_idx const * fact_hidx = ext.find_fact(flip(lhs));
|
||||||
|
if (fact_hidx) {
|
||||||
|
expr arg = curr_state().get_hypothesis_decl(*fact_hidx).get_self();
|
||||||
|
if (is_not(lhs)) {
|
||||||
|
proof = get_app_builder().mk_app(get_or_neg_resolve_left_name(),
|
||||||
|
proof, arg);
|
||||||
|
} else {
|
||||||
|
proof = get_app_builder().mk_app(get_or_resolve_left_name(),
|
||||||
|
proof, arg);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
lean_assert(!missing_A);
|
||||||
|
lean_assert(!missing_B);
|
||||||
|
missing_B = true;
|
||||||
|
final_type = lhs;
|
||||||
|
proof_left = proof;
|
||||||
|
type_init_right = rhs;
|
||||||
|
proof_init_right = mk_fresh_local(type_init_right);
|
||||||
|
proof = proof_init_right;
|
||||||
|
}
|
||||||
|
type = rhs;
|
||||||
|
}
|
||||||
|
|
||||||
|
expr final_proof;
|
||||||
|
if (missing_A || missing_B) {
|
||||||
|
hypothesis_idx const * fact_hidx = ext.find_fact(flip(type));
|
||||||
|
lean_assert(fact_hidx);
|
||||||
|
expr arg = curr_state().get_hypothesis_decl(*fact_hidx).get_self();
|
||||||
|
if (is_not(type)) proof = mk_app(proof, arg);
|
||||||
|
else proof = mk_app(arg, proof);
|
||||||
|
expr proof_right = get_app_builder().mk_app(get_not_wrap_name(), type_init_right, Fun(proof_init_right, proof));
|
||||||
|
if (missing_A) {
|
||||||
|
final_proof = get_app_builder().mk_app(get_implies_resolve_name(), proof_left, proof_right);
|
||||||
|
} else {
|
||||||
|
final_proof = get_app_builder().mk_app(get_or_resolve_right_name(), proof_left, proof_right);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
final_type = type;
|
||||||
|
final_proof = proof;
|
||||||
|
}
|
||||||
|
|
||||||
|
curr_state().mk_hypothesis(final_type, final_proof);
|
||||||
|
return action_result::new_branch();
|
||||||
}
|
}
|
||||||
|
|
||||||
action_result unit_fact(expr const & type) {
|
action_result unit_fact(expr const & type) {
|
||||||
unit_branch_extension & ext = get_extension();
|
unit_branch_extension & ext = get_extension();
|
||||||
list<hypothesis_idx> const * lemmas = ext.find_lemmas(type);
|
list<hypothesis_idx> const * lemmas = ext.find_lemmas_watching_fact(type);
|
||||||
if (!lemmas) return action_result::failed();
|
if (!lemmas) return action_result::failed();
|
||||||
bool success = false;
|
bool success = false;
|
||||||
ext.filter_lemmas(type, [&](hypothesis_idx const & hidx) {
|
for_each(*lemmas, [&](hypothesis_idx const & hidx) {
|
||||||
hypothesis const & h = curr_state().get_hypothesis_decl(hidx);
|
hypothesis const & h = curr_state().get_hypothesis_decl(hidx);
|
||||||
if (h.is_dead()) {
|
action_result r = unit_lemma(hidx, whnf(h.get_type()), h.get_self());
|
||||||
return false;
|
success = success || (r.get_kind() == action_result::NewBranch);
|
||||||
} else {
|
|
||||||
action_result r = unit_pi(whnf(h.get_type()), h.get_self());
|
|
||||||
success = success || (r.get_kind() == action_result::NewBranch);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
});
|
});
|
||||||
if (success) return action_result::new_branch();
|
if (success) return action_result::new_branch();
|
||||||
else return action_result::failed();
|
else return action_result::failed();
|
||||||
}
|
}
|
||||||
|
|
||||||
action_result unit_action(unsigned _hidx) {
|
action_result unit_action(unsigned hidx) {
|
||||||
hypothesis const & h = curr_state().get_hypothesis_decl(_hidx);
|
hypothesis const & h = curr_state().get_hypothesis_decl(hidx);
|
||||||
expr type = whnf(h.get_type());
|
expr type = whnf(h.get_type());
|
||||||
if (is_pi(type)) return unit_pi(type, h.get_self());
|
if (is_lemma(type)) return unit_lemma(hidx, type, h.get_self());
|
||||||
else if (is_prop(type)) return unit_fact(type);
|
else if (is_fact(type)) return unit_fact(type);
|
||||||
else return action_result::failed();
|
else return action_result::failed();
|
||||||
}
|
}
|
||||||
}}
|
}}
|
||||||
|
|
|
@ -8,18 +8,15 @@ Author: Daniel Selsam
|
||||||
|
|
||||||
namespace lean {
|
namespace lean {
|
||||||
namespace blast {
|
namespace blast {
|
||||||
/* \brief Propagates lemmas of the form
|
/* \brief The unit module handles lemmas of the form
|
||||||
<tt>(A11 \/ ... \/ ...) -> ... -> (Am1 \/ ... \/ ...) -> (B1 /\ ... /\ ...)</tt>
|
<tt>A_1 -> ... -> A_n -> B_1 \/ (B2 \/ ... \/ B_m)...)</tt>
|
||||||
where each <tt>A</tt> and <tt>B</tt> can be any propositions, and can optionally
|
|
||||||
be negated.
|
|
||||||
|
|
||||||
If we can find one disjunct for every antecedent, we instantiate the lemma
|
Whenever all but one of the literals is present as a hypothesis with
|
||||||
fully. On the other hand, if we can find one disjunct for all but one
|
the appropriate polarity, we instantiate and resolve and necessary
|
||||||
antecedents, and one fact that disproves the conjunctive conclusion,
|
to conclude a new literal.
|
||||||
we conclude the negation of the missing disjunctive argument.
|
|
||||||
|
|
||||||
Remark: conjunctions in the antecedents and disjunctions in the conclusion are
|
Remark: we assume that a pre-processing step will put lemmas
|
||||||
both treated as monolithic propositions, so some pre-processing may be necessary.
|
into the above form when possible.
|
||||||
*/
|
*/
|
||||||
action_result unit_action(unsigned hidx);
|
action_result unit_action(unsigned hidx);
|
||||||
|
|
||||||
|
|
|
@ -66,6 +66,7 @@ name const * g_iff_elim_left = nullptr;
|
||||||
name const * g_iff_elim_right = nullptr;
|
name const * g_iff_elim_right = nullptr;
|
||||||
name const * g_iff_false_intro = nullptr;
|
name const * g_iff_false_intro = nullptr;
|
||||||
name const * g_iff_true_intro = nullptr;
|
name const * g_iff_true_intro = nullptr;
|
||||||
|
name const * g_implies_resolve = nullptr;
|
||||||
name const * g_implies = nullptr;
|
name const * g_implies = nullptr;
|
||||||
name const * g_implies_of_if_pos = nullptr;
|
name const * g_implies_of_if_pos = nullptr;
|
||||||
name const * g_implies_of_if_neg = nullptr;
|
name const * g_implies_of_if_neg = nullptr;
|
||||||
|
@ -81,6 +82,7 @@ name const * g_nat_succ = nullptr;
|
||||||
name const * g_nat_zero = nullptr;
|
name const * g_nat_zero = nullptr;
|
||||||
name const * g_neg = nullptr;
|
name const * g_neg = nullptr;
|
||||||
name const * g_not = nullptr;
|
name const * g_not = nullptr;
|
||||||
|
name const * g_not_wrap = nullptr;
|
||||||
name const * g_not_of_iff_false = nullptr;
|
name const * g_not_of_iff_false = nullptr;
|
||||||
name const * g_num = nullptr;
|
name const * g_num = nullptr;
|
||||||
name const * g_num_zero = nullptr;
|
name const * g_num_zero = nullptr;
|
||||||
|
@ -94,6 +96,11 @@ name const * g_or = nullptr;
|
||||||
name const * g_or_elim = nullptr;
|
name const * g_or_elim = nullptr;
|
||||||
name const * g_or_intro_left = nullptr;
|
name const * g_or_intro_left = nullptr;
|
||||||
name const * g_or_intro_right = nullptr;
|
name const * g_or_intro_right = nullptr;
|
||||||
|
name const * g_or_rec = nullptr;
|
||||||
|
name const * g_or_resolve_left = nullptr;
|
||||||
|
name const * g_or_resolve_right = nullptr;
|
||||||
|
name const * g_or_neg_resolve_left = nullptr;
|
||||||
|
name const * g_or_neg_resolve_right = nullptr;
|
||||||
name const * g_poly_unit = nullptr;
|
name const * g_poly_unit = nullptr;
|
||||||
name const * g_poly_unit_star = nullptr;
|
name const * g_poly_unit_star = nullptr;
|
||||||
name const * g_pos_num = nullptr;
|
name const * g_pos_num = nullptr;
|
||||||
|
@ -245,6 +252,7 @@ void initialize_constants() {
|
||||||
g_iff_elim_right = new name{"iff", "elim_right"};
|
g_iff_elim_right = new name{"iff", "elim_right"};
|
||||||
g_iff_false_intro = new name{"iff_false_intro"};
|
g_iff_false_intro = new name{"iff_false_intro"};
|
||||||
g_iff_true_intro = new name{"iff_true_intro"};
|
g_iff_true_intro = new name{"iff_true_intro"};
|
||||||
|
g_implies_resolve = new name{"implies", "resolve"};
|
||||||
g_implies = new name{"implies"};
|
g_implies = new name{"implies"};
|
||||||
g_implies_of_if_pos = new name{"implies_of_if_pos"};
|
g_implies_of_if_pos = new name{"implies_of_if_pos"};
|
||||||
g_implies_of_if_neg = new name{"implies_of_if_neg"};
|
g_implies_of_if_neg = new name{"implies_of_if_neg"};
|
||||||
|
@ -260,6 +268,7 @@ void initialize_constants() {
|
||||||
g_nat_zero = new name{"nat", "zero"};
|
g_nat_zero = new name{"nat", "zero"};
|
||||||
g_neg = new name{"neg"};
|
g_neg = new name{"neg"};
|
||||||
g_not = new name{"not"};
|
g_not = new name{"not"};
|
||||||
|
g_not_wrap = new name{"not", "wrap"};
|
||||||
g_not_of_iff_false = new name{"not_of_iff_false"};
|
g_not_of_iff_false = new name{"not_of_iff_false"};
|
||||||
g_num = new name{"num"};
|
g_num = new name{"num"};
|
||||||
g_num_zero = new name{"num", "zero"};
|
g_num_zero = new name{"num", "zero"};
|
||||||
|
@ -273,6 +282,11 @@ void initialize_constants() {
|
||||||
g_or_elim = new name{"or", "elim"};
|
g_or_elim = new name{"or", "elim"};
|
||||||
g_or_intro_left = new name{"or", "intro_left"};
|
g_or_intro_left = new name{"or", "intro_left"};
|
||||||
g_or_intro_right = new name{"or", "intro_right"};
|
g_or_intro_right = new name{"or", "intro_right"};
|
||||||
|
g_or_rec = new name{"or", "rec"};
|
||||||
|
g_or_resolve_left = new name{"or", "resolve_left"};
|
||||||
|
g_or_resolve_right = new name{"or", "resolve_right"};
|
||||||
|
g_or_neg_resolve_left = new name{"or", "neg_resolve_left"};
|
||||||
|
g_or_neg_resolve_right = new name{"or", "neg_resolve_right"};
|
||||||
g_poly_unit = new name{"poly_unit"};
|
g_poly_unit = new name{"poly_unit"};
|
||||||
g_poly_unit_star = new name{"poly_unit", "star"};
|
g_poly_unit_star = new name{"poly_unit", "star"};
|
||||||
g_pos_num = new name{"pos_num"};
|
g_pos_num = new name{"pos_num"};
|
||||||
|
@ -425,6 +439,7 @@ void finalize_constants() {
|
||||||
delete g_iff_elim_right;
|
delete g_iff_elim_right;
|
||||||
delete g_iff_false_intro;
|
delete g_iff_false_intro;
|
||||||
delete g_iff_true_intro;
|
delete g_iff_true_intro;
|
||||||
|
delete g_implies_resolve;
|
||||||
delete g_implies;
|
delete g_implies;
|
||||||
delete g_implies_of_if_pos;
|
delete g_implies_of_if_pos;
|
||||||
delete g_implies_of_if_neg;
|
delete g_implies_of_if_neg;
|
||||||
|
@ -440,6 +455,7 @@ void finalize_constants() {
|
||||||
delete g_nat_zero;
|
delete g_nat_zero;
|
||||||
delete g_neg;
|
delete g_neg;
|
||||||
delete g_not;
|
delete g_not;
|
||||||
|
delete g_not_wrap;
|
||||||
delete g_not_of_iff_false;
|
delete g_not_of_iff_false;
|
||||||
delete g_num;
|
delete g_num;
|
||||||
delete g_num_zero;
|
delete g_num_zero;
|
||||||
|
@ -453,6 +469,11 @@ void finalize_constants() {
|
||||||
delete g_or_elim;
|
delete g_or_elim;
|
||||||
delete g_or_intro_left;
|
delete g_or_intro_left;
|
||||||
delete g_or_intro_right;
|
delete g_or_intro_right;
|
||||||
|
delete g_or_rec;
|
||||||
|
delete g_or_resolve_left;
|
||||||
|
delete g_or_resolve_right;
|
||||||
|
delete g_or_neg_resolve_left;
|
||||||
|
delete g_or_neg_resolve_right;
|
||||||
delete g_poly_unit;
|
delete g_poly_unit;
|
||||||
delete g_poly_unit_star;
|
delete g_poly_unit_star;
|
||||||
delete g_pos_num;
|
delete g_pos_num;
|
||||||
|
@ -604,6 +625,7 @@ name const & get_iff_elim_left_name() { return *g_iff_elim_left; }
|
||||||
name const & get_iff_elim_right_name() { return *g_iff_elim_right; }
|
name const & get_iff_elim_right_name() { return *g_iff_elim_right; }
|
||||||
name const & get_iff_false_intro_name() { return *g_iff_false_intro; }
|
name const & get_iff_false_intro_name() { return *g_iff_false_intro; }
|
||||||
name const & get_iff_true_intro_name() { return *g_iff_true_intro; }
|
name const & get_iff_true_intro_name() { return *g_iff_true_intro; }
|
||||||
|
name const & get_implies_resolve_name() { return *g_implies_resolve; }
|
||||||
name const & get_implies_name() { return *g_implies; }
|
name const & get_implies_name() { return *g_implies; }
|
||||||
name const & get_implies_of_if_pos_name() { return *g_implies_of_if_pos; }
|
name const & get_implies_of_if_pos_name() { return *g_implies_of_if_pos; }
|
||||||
name const & get_implies_of_if_neg_name() { return *g_implies_of_if_neg; }
|
name const & get_implies_of_if_neg_name() { return *g_implies_of_if_neg; }
|
||||||
|
@ -619,6 +641,7 @@ name const & get_nat_succ_name() { return *g_nat_succ; }
|
||||||
name const & get_nat_zero_name() { return *g_nat_zero; }
|
name const & get_nat_zero_name() { return *g_nat_zero; }
|
||||||
name const & get_neg_name() { return *g_neg; }
|
name const & get_neg_name() { return *g_neg; }
|
||||||
name const & get_not_name() { return *g_not; }
|
name const & get_not_name() { return *g_not; }
|
||||||
|
name const & get_not_wrap_name() { return *g_not_wrap; }
|
||||||
name const & get_not_of_iff_false_name() { return *g_not_of_iff_false; }
|
name const & get_not_of_iff_false_name() { return *g_not_of_iff_false; }
|
||||||
name const & get_num_name() { return *g_num; }
|
name const & get_num_name() { return *g_num; }
|
||||||
name const & get_num_zero_name() { return *g_num_zero; }
|
name const & get_num_zero_name() { return *g_num_zero; }
|
||||||
|
@ -632,6 +655,11 @@ name const & get_or_name() { return *g_or; }
|
||||||
name const & get_or_elim_name() { return *g_or_elim; }
|
name const & get_or_elim_name() { return *g_or_elim; }
|
||||||
name const & get_or_intro_left_name() { return *g_or_intro_left; }
|
name const & get_or_intro_left_name() { return *g_or_intro_left; }
|
||||||
name const & get_or_intro_right_name() { return *g_or_intro_right; }
|
name const & get_or_intro_right_name() { return *g_or_intro_right; }
|
||||||
|
name const & get_or_rec_name() { return *g_or_rec; }
|
||||||
|
name const & get_or_resolve_left_name() { return *g_or_resolve_left; }
|
||||||
|
name const & get_or_resolve_right_name() { return *g_or_resolve_right; }
|
||||||
|
name const & get_or_neg_resolve_left_name() { return *g_or_neg_resolve_left; }
|
||||||
|
name const & get_or_neg_resolve_right_name() { return *g_or_neg_resolve_right; }
|
||||||
name const & get_poly_unit_name() { return *g_poly_unit; }
|
name const & get_poly_unit_name() { return *g_poly_unit; }
|
||||||
name const & get_poly_unit_star_name() { return *g_poly_unit_star; }
|
name const & get_poly_unit_star_name() { return *g_poly_unit_star; }
|
||||||
name const & get_pos_num_name() { return *g_pos_num; }
|
name const & get_pos_num_name() { return *g_pos_num; }
|
||||||
|
|
|
@ -68,6 +68,7 @@ name const & get_iff_elim_left_name();
|
||||||
name const & get_iff_elim_right_name();
|
name const & get_iff_elim_right_name();
|
||||||
name const & get_iff_false_intro_name();
|
name const & get_iff_false_intro_name();
|
||||||
name const & get_iff_true_intro_name();
|
name const & get_iff_true_intro_name();
|
||||||
|
name const & get_implies_resolve_name();
|
||||||
name const & get_implies_name();
|
name const & get_implies_name();
|
||||||
name const & get_implies_of_if_pos_name();
|
name const & get_implies_of_if_pos_name();
|
||||||
name const & get_implies_of_if_neg_name();
|
name const & get_implies_of_if_neg_name();
|
||||||
|
@ -83,6 +84,7 @@ name const & get_nat_succ_name();
|
||||||
name const & get_nat_zero_name();
|
name const & get_nat_zero_name();
|
||||||
name const & get_neg_name();
|
name const & get_neg_name();
|
||||||
name const & get_not_name();
|
name const & get_not_name();
|
||||||
|
name const & get_not_wrap_name();
|
||||||
name const & get_not_of_iff_false_name();
|
name const & get_not_of_iff_false_name();
|
||||||
name const & get_num_name();
|
name const & get_num_name();
|
||||||
name const & get_num_zero_name();
|
name const & get_num_zero_name();
|
||||||
|
@ -96,6 +98,11 @@ name const & get_or_name();
|
||||||
name const & get_or_elim_name();
|
name const & get_or_elim_name();
|
||||||
name const & get_or_intro_left_name();
|
name const & get_or_intro_left_name();
|
||||||
name const & get_or_intro_right_name();
|
name const & get_or_intro_right_name();
|
||||||
|
name const & get_or_rec_name();
|
||||||
|
name const & get_or_resolve_left_name();
|
||||||
|
name const & get_or_resolve_right_name();
|
||||||
|
name const & get_or_neg_resolve_left_name();
|
||||||
|
name const & get_or_neg_resolve_right_name();
|
||||||
name const & get_poly_unit_name();
|
name const & get_poly_unit_name();
|
||||||
name const & get_poly_unit_star_name();
|
name const & get_poly_unit_star_name();
|
||||||
name const & get_pos_num_name();
|
name const & get_pos_num_name();
|
||||||
|
|
|
@ -61,6 +61,7 @@ iff.elim_left
|
||||||
iff.elim_right
|
iff.elim_right
|
||||||
iff_false_intro
|
iff_false_intro
|
||||||
iff_true_intro
|
iff_true_intro
|
||||||
|
implies.resolve
|
||||||
implies
|
implies
|
||||||
implies_of_if_pos
|
implies_of_if_pos
|
||||||
implies_of_if_neg
|
implies_of_if_neg
|
||||||
|
@ -76,6 +77,7 @@ nat.succ
|
||||||
nat.zero
|
nat.zero
|
||||||
neg
|
neg
|
||||||
not
|
not
|
||||||
|
not.wrap
|
||||||
not_of_iff_false
|
not_of_iff_false
|
||||||
num
|
num
|
||||||
num.zero
|
num.zero
|
||||||
|
@ -89,6 +91,11 @@ or
|
||||||
or.elim
|
or.elim
|
||||||
or.intro_left
|
or.intro_left
|
||||||
or.intro_right
|
or.intro_right
|
||||||
|
or.rec
|
||||||
|
or.resolve_left
|
||||||
|
or.resolve_right
|
||||||
|
or.neg_resolve_left
|
||||||
|
or.neg_resolve_right
|
||||||
poly_unit
|
poly_unit
|
||||||
poly_unit.star
|
poly_unit.star
|
||||||
pos_num
|
pos_num
|
||||||
|
|
|
@ -304,6 +304,13 @@ expr mk_false_rec(type_checker & tc, expr const & f, expr const & t) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool is_or(expr const & e) {
|
||||||
|
buffer<expr> args;
|
||||||
|
expr const & fn = get_app_args(e, args);
|
||||||
|
if (is_constant(fn) && const_name(fn) == get_or_name() && args.size() == 2) return true;
|
||||||
|
else return false;
|
||||||
|
}
|
||||||
|
|
||||||
bool is_or(expr const & e, expr & A, expr & B) {
|
bool is_or(expr const & e, expr & A, expr & B) {
|
||||||
buffer<expr> args;
|
buffer<expr> args;
|
||||||
expr const & fn = get_app_args(e, args);
|
expr const & fn = get_app_args(e, args);
|
||||||
|
|
|
@ -143,6 +143,7 @@ bool is_false(environment const & env, expr const & e);
|
||||||
/** \brief Return an element of type t given an element \c f : false (in standard mode) and empty (in HoTT) mode */
|
/** \brief Return an element of type t given an element \c f : false (in standard mode) and empty (in HoTT) mode */
|
||||||
expr mk_false_rec(type_checker & tc, expr const & f, expr const & t);
|
expr mk_false_rec(type_checker & tc, expr const & f, expr const & t);
|
||||||
|
|
||||||
|
bool is_or(expr const & e);
|
||||||
bool is_or(expr const & e, expr & A, expr & B);
|
bool is_or(expr const & e, expr & A, expr & B);
|
||||||
|
|
||||||
/** \brief Return true if \c e is of the form <tt>(not arg)</tt>, and store \c arg in \c a.
|
/** \brief Return true if \c e is of the form <tt>(not arg)</tt>, and store \c arg in \c a.
|
||||||
|
|
|
@ -1,13 +0,0 @@
|
||||||
-- Basic (propositional) forward chaining
|
|
||||||
constants (A B C D : Prop)
|
|
||||||
|
|
||||||
definition lemma1 : A → (A → B) → B := by blast
|
|
||||||
definition lemma2 : ¬ B → (A → B) → ¬ A := by blast
|
|
||||||
definition lemma3 : ¬ C → A → (A → B → C) → ¬ B := by blast
|
|
||||||
definition lemma4 : C → A → (A → B → ¬ C) → ¬ B := by blast
|
|
||||||
-- TODO(dhs): [forward_action] is responsible for
|
|
||||||
-- eliminating double negation
|
|
||||||
definition lemma5 : C → A → (A → ¬ B → ¬ C) → ¬ ¬ B := by blast
|
|
||||||
definition lemma6 : (A → B → ¬ C) → C → A → ¬ B := by blast
|
|
||||||
definition lemma7 : ¬ C → (A → B → C) → A → ¬ B := by blast
|
|
||||||
definition lemma8 : A → (A → B) → C → B ∧ C := by blast
|
|
|
@ -1,9 +0,0 @@
|
||||||
-- Basic (propositional) forward chaining with nested backward chaining
|
|
||||||
constants (A B C D : Prop)
|
|
||||||
set_option blast.trace true
|
|
||||||
set_option blast.init_depth 10
|
|
||||||
set_option blast.inc_depth 1000
|
|
||||||
set_option pp.all true
|
|
||||||
|
|
||||||
definition lemma1 : A → (A → B) → C → B ∧ C :=
|
|
||||||
by blast
|
|
|
@ -1,12 +0,0 @@
|
||||||
-- Basic (propositional) forward chaining with clauses
|
|
||||||
constants (A B C D E : Prop)
|
|
||||||
set_option blast.recursor false
|
|
||||||
|
|
||||||
definition lemma1 : A → (A ∨ B → C) → C := by blast
|
|
||||||
definition lemma2 : B → (A ∨ B → C) → C := by blast
|
|
||||||
definition lemma3 : A → B → (A → B ∨ C → D) → D := by blast
|
|
||||||
definition lemma4 : A → B → (A → B ∨ C ∨ C → D) → D := by blast
|
|
||||||
definition lemma5 : A → B → (E ∨ A ∨ E → E ∨ B ∨ C ∨ C → D) → D := by blast
|
|
||||||
definition lemma6 : A → (A → B → C) → ¬ C → ¬ B := by blast
|
|
||||||
definition lemma7 : ¬ D → B → (A → E ∨ B ∨ C ∨ C → D) → ¬ A := by blast
|
|
||||||
definition lemma8 : ¬ D → B → (A ∨ E → E ∨ B ∨ C ∨ C → D) → ¬ (A ∨ E) := by blast
|
|
|
@ -1,12 +0,0 @@
|
||||||
-- Basic (propositional) forward chaining with conjunctive conclusions
|
|
||||||
constants (A B C D E : Prop)
|
|
||||||
set_option blast.recursor false
|
|
||||||
|
|
||||||
definition lemma1 : B → (A → (¬ B) ∧ C) → ¬ A := by blast
|
|
||||||
definition lemma2 : ¬ B → (A → B ∧ C) → ¬ A := by blast
|
|
||||||
definition lemma3 : B → (A → C ∧ (¬ B)) → ¬ A := by blast
|
|
||||||
definition lemma4 : ¬ B → (A → C ∧ B) → ¬ A := by blast
|
|
||||||
definition lemma5 : B → (A → (¬ B) ∧ E ∧ C) → ¬ A := by blast
|
|
||||||
definition lemma6 : ¬ B → (A → E ∧ B ∧ C) → ¬ A := by blast
|
|
||||||
definition lemma7 : B → (A → E ∧ C ∧ (¬ B)) → ¬ A := by blast
|
|
||||||
definition lemma8 : ¬ B → (A → C ∧ B ∧ E) → ¬ A := by blast
|
|
|
@ -1,10 +0,0 @@
|
||||||
-- Basic (propositional) forward chaining with disjunctive antecedents and conjunctive conclusions
|
|
||||||
constants (A B C D E F : Prop)
|
|
||||||
set_option blast.recursor false
|
|
||||||
|
|
||||||
definition lemma1 : B → (A ∨ E → (¬ B) ∧ C) → ¬ (A ∨ E) := by blast
|
|
||||||
definition lemma2 : ¬ B → (A ∨ E → B ∧ C) → ¬ (A ∨ E) := by blast
|
|
||||||
definition lemma3 : A → ¬ D → (A ∨ E → B → C ∧ D) → ¬ B := by blast
|
|
||||||
definition lemma4 : A → ¬ E → (A → B → E ∧ F) → ¬ B := by blast
|
|
||||||
definition lemma5 : (A → B) → ¬ B → ¬ A := by blast
|
|
||||||
definition lemma6 : (A → B ∧ C) → ¬ B → ¬ A := by blast
|
|
43
tests/lean/run/blast_unit.lean
Normal file
43
tests/lean/run/blast_unit.lean
Normal file
|
@ -0,0 +1,43 @@
|
||||||
|
-- Testing all possible cases of [unit_action]
|
||||||
|
set_option blast.recursor false
|
||||||
|
variables {A₁ A₂ A₃ A₄ B₁ B₂ B₃ B₄ : Prop}
|
||||||
|
|
||||||
|
-- H first, all pos
|
||||||
|
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) : B₄ := by blast
|
||||||
|
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₄) : B₃ := by blast
|
||||||
|
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n3 : ¬ B₃) (n3 : ¬ B₄) : B₂ := by blast
|
||||||
|
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) (a1 : A₁) (a2 : A₂) (a3 : A₃) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) : B₁ := by blast
|
||||||
|
|
||||||
|
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) (a1 : A₁) (a2 : A₂) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) : ¬ A₃ := by blast
|
||||||
|
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) (a1 : A₁) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) : ¬ A₂ := by blast
|
||||||
|
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) : ¬ A₁ := by blast
|
||||||
|
|
||||||
|
-- H last, all pos
|
||||||
|
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₄ := by blast
|
||||||
|
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₃ := by blast
|
||||||
|
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n3 : ¬ B₃) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₂ := by blast
|
||||||
|
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₁ := by blast
|
||||||
|
|
||||||
|
example (a1 : A₁) (a2 : A₂) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : ¬ A₃ := by blast
|
||||||
|
example (a1 : A₁) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : ¬ A₂ := by blast
|
||||||
|
example (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : ¬ A₁ := by blast
|
||||||
|
|
||||||
|
-- H first, all neg
|
||||||
|
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) : ¬ B₄ := by blast
|
||||||
|
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b4 : B₄) : ¬ B₃ := by blast
|
||||||
|
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b3 : B₃) (b4 : B₄) : ¬ B₂ := by blast
|
||||||
|
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬ B₁ := by blast
|
||||||
|
|
||||||
|
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) (n1 : ¬ A₁) (n2 : ¬ A₂) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬ ¬ A₃ := by blast
|
||||||
|
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) (n1 : ¬ A₁) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬ ¬ A₂ := by blast
|
||||||
|
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬ ¬ A₁ := by blast
|
||||||
|
|
||||||
|
-- H last, all neg
|
||||||
|
example (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) : ¬ B₄ := by blast
|
||||||
|
example (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) : ¬ B₃ := by blast
|
||||||
|
example (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b3 : B₃) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) : ¬ B₂ := by blast
|
||||||
|
example (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b2 : B₂) (b3 : B₃) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) : ¬ B₁ := by blast
|
||||||
|
|
||||||
|
example (n1 : ¬ A₁) (n2 : ¬ A₂) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) : ¬ ¬ A₃ := by blast
|
||||||
|
example (n1 : ¬ A₁) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) : ¬ ¬ A₂ := by blast
|
||||||
|
example (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ∨ ¬ B₂ ∨ ¬ B₃ ∨ ¬ B₄) : ¬ ¬ A₁ := by blast
|
|
@ -1,4 +1,4 @@
|
||||||
-- Basic (propositional) forward chaining with conjunctive conclusions
|
-- Unit propagation with congruence closure
|
||||||
constants (a b c d e : nat)
|
constants (a b c d e : nat)
|
||||||
constants (p : nat → Prop)
|
constants (p : nat → Prop)
|
||||||
constants (q : nat → nat → Prop)
|
constants (q : nat → nat → Prop)
|
||||||
|
@ -6,6 +6,8 @@ constants (f : nat → nat)
|
||||||
set_option blast.recursor false
|
set_option blast.recursor false
|
||||||
set_option blast.subst false
|
set_option blast.subst false
|
||||||
|
|
||||||
|
-- The following tests require the unit preprocessor to work
|
||||||
|
/-
|
||||||
definition lemma1 : a = d → b = e → p b → (p a → (¬ p e) ∧ p c) → ¬ p d := by blast
|
definition lemma1 : a = d → b = e → p b → (p a → (¬ p e) ∧ p c) → ¬ p d := by blast
|
||||||
definition lemma2a : ¬ p b → (p d → p b ∧ p c) → d = e → e = a → ¬ p a := by blast
|
definition lemma2a : ¬ p b → (p d → p b ∧ p c) → d = e → e = a → ¬ p a := by blast
|
||||||
definition lemma2b : ¬ p (f b) → (p (f a) → p (f d) ∧ p (f c)) → b = d → ¬ p (f a) := by blast
|
definition lemma2b : ¬ p (f b) → (p (f a) → p (f d) ∧ p (f c)) → b = d → ¬ p (f a) := by blast
|
||||||
|
@ -15,3 +17,4 @@ definition lemma4b : b = f b → ¬ p (f (f b)) → (p a → q c c ∧ q e c ∧
|
||||||
by blast
|
by blast
|
||||||
definition lemma5 : p b → (p (f a) → (¬ p b) ∧ p e ∧ p c) → ¬ p (f a) := by blast
|
definition lemma5 : p b → (p (f a) → (¬ p b) ∧ p e ∧ p c) → ¬ p (f a) := by blast
|
||||||
definition lemma6 : ¬ (q b a) → d = a → (p a → p e ∧ (q b d) ∧ p c) → ¬ p a := by blast
|
definition lemma6 : ¬ (q b a) → d = a → (p a → p e ∧ (q b d) ∧ p c) → ¬ p a := by blast
|
||||||
|
-/
|
Loading…
Reference in a new issue