refactor(library/blast/unit): simplify module

This commit is contained in:
Daniel Selsam 2015-11-28 12:46:13 -08:00 committed by Leonardo de Moura
parent 61db311227
commit 2bf9989bd9
15 changed files with 342 additions and 216 deletions

View file

@ -27,6 +27,8 @@ false.rec b (H2 H1)
theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a :=
assume Ha : a, absurd (H1 Ha) H2
definition implies.resolve {a b : Prop} (H : a → b) (nb : ¬ b) : ¬ a := assume Ha, nb (H Ha)
/- not -/
theorem not_false : ¬false :=
@ -37,6 +39,8 @@ definition non_contradictory (a : Prop) : Prop := ¬¬a
theorem non_contradictory_intro {a : Prop} (Ha : a) : ¬¬a :=
assume Hna : ¬a, absurd Ha Hna
definition not.wrap {a : Prop} (na : a → false) : ¬ a := na
/- false -/
theorem false.elim {c : Prop} (H : false) : c :=
@ -459,6 +463,20 @@ iff.trans or.comm !or_false
theorem or_self [simp] (a : Prop) : a a ↔ a :=
iff.intro (or.rec id id) or.inl
/- or resolution rulse -/
definition or.resolve_left {a b : Prop} (H : a b) (na : ¬ a) : b :=
or.elim H (λ Ha, absurd Ha na) id
definition or.neg_resolve_left {a b : Prop} (H : ¬ a b) (Ha : a) : b :=
or.elim H (λ na, absurd Ha na) id
definition or.resolve_right {a b : Prop} (H : a b) (nb : ¬ b) : a :=
or.elim H id (λ Hb, absurd Hb nb)
definition or.neg_resolve_right {a b : Prop} (H : a ¬ b) (Hb : b) : a :=
or.elim H id (λ nb, absurd Hb nb)
/- iff simp rules -/
theorem iff_true [simp] (a : Prop) : (a ↔ true) ↔ a :=

View file

@ -21,123 +21,88 @@ Author: Daniel Selsam
namespace lean {
namespace blast {
bool is_lemma(expr const & _type) {
expr type = _type;
bool has_antecedent = false;
if (!is_prop(type)) return false;
while (is_pi(type) && closed(binding_body(type))) {
has_antecedent = true;
type = binding_body(type);
}
if (has_antecedent && !is_pi(type)) return true;
else if (is_or(type)) return true;
else return false;
}
bool is_fact(expr const & type) {
return is_prop(type) && !is_pi(type) && !is_or(type);
}
expr flip(expr const & e) {
expr not_e;
if (!blast::is_not(e, not_e)) not_e = get_app_builder().mk_not(e);
return not_e;
}
bool is_not(expr const & e) {
expr not_e;
return blast::is_not(e, not_e);
}
static unsigned g_ext_id = 0;
struct unit_branch_extension : public branch_extension {
rb_multi_map<expr, hypothesis_idx, expr_quick_cmp> m_lemma_map;
rb_map<expr, hypothesis_idx, expr_quick_cmp> m_fact_map;
/* We map each lemma to the two facts that it is watching. */
rb_multi_map<hypothesis_idx, expr, unsigned_cmp> m_lemmas_to_facts;
/* We map each fact back to the lemma hypotheses that are watching it. */
rb_multi_map<expr, hypothesis_idx, expr_quick_cmp> m_facts_to_lemmas;
/* We map each fact expression to its hypothesis. */
rb_map<expr, hypothesis_idx, expr_quick_cmp> m_facts;
unit_branch_extension() {}
unit_branch_extension(unit_branch_extension const & b):
m_lemma_map(b.m_lemma_map), m_fact_map(b.m_fact_map) {}
m_lemmas_to_facts(b.m_lemmas_to_facts),
m_facts_to_lemmas(b.m_facts_to_lemmas),
m_facts(b.m_facts) {}
virtual ~unit_branch_extension() {}
virtual branch_extension * clone() override { return new unit_branch_extension(*this); }
void insert(expr const & e, hypothesis_idx hidx, bool neg) {
expr A, B;
if (is_or(e, A, B)) {
lean_assert(!neg);
insert(A, hidx, neg);
insert(B, hidx, neg);
} else if (is_and(e, A, B)) {
lean_assert(neg);
insert(A, hidx, neg);
insert(B, hidx, neg);
} else if (neg) {
expr not_e;
if (blast::is_not(e, not_e)) m_lemma_map.insert(not_e, hidx);
else m_lemma_map.insert(get_app_builder().mk_not(e), hidx);
} else {
m_lemma_map.insert(e, hidx);
}
}
virtual void hypothesis_activated(hypothesis const & h, hypothesis_idx hidx) override {
expr type = whnf(h.get_type());
if (!is_pi(type)) {
if (is_prop(type)) m_fact_map.insert(type, hidx);
return;
if (is_fact(h.get_type())) m_facts.insert(h.get_type(), hidx);
}
bool has_antecedent = false;
while (is_pi(type) && is_prop(binding_domain(type)) && closed(binding_body(type))) {
has_antecedent = true;
insert(binding_domain(type), hidx, false);
type = binding_body(type);
virtual void hypothesis_deleted(hypothesis const & h, hypothesis_idx hidx) override {
if (is_lemma(h.get_type())) {
list<expr> const * facts = find_facts_watching_lemma(hidx);
if (facts) {
for_each(*facts, [&](expr const & fact) {
unwatch(hidx, fact);
});
}
if (has_antecedent && is_prop(type)) {
insert(type, hidx, true);
} else if (is_fact(h.get_type())) {
m_facts.erase(h.get_type());
lean_assert(!find_lemmas_watching_fact(h.get_type()));
}
}
virtual void hypothesis_deleted(hypothesis const & , hypothesis_idx ) override {
/* We discard opportunistically when we encounter a hypothesis that is dead. */
}
public:
list<hypothesis_idx> const * find_lemmas(expr const & e) { return m_lemma_map.find(e); }
template<typename P> void filter_lemmas(expr const & e, P && p) { return m_lemma_map.filter(e, p); }
hypothesis_idx const * find_fact(expr const & e) { return m_fact_map.find(e); }
void erase_fact(expr const & e) { return m_fact_map.erase(e); }
/* Returns a proof of the disjunction [e] */
optional<expr> find_live_fact_in_disjunction(expr const & e) {
expr A, B;
if (is_or(e, A, B)) {
if (auto A_fact = find_live_fact_in_disjunction(A)) {
return some_expr(get_app_builder().mk_app(get_or_intro_left_name(), {A, B, *A_fact}));
} else if (auto B_fact = find_live_fact_in_disjunction(B)) {
return some_expr(get_app_builder().mk_app(get_or_intro_right_name(), {A, B, *B_fact}));
} else {
return none_expr();
list<hypothesis_idx> const * find_lemmas_watching_fact(expr const & fact_type) {
return m_facts_to_lemmas.find(fact_type);
}
} else {
hypothesis_idx const * fact_hidx = find_fact(e);
if (fact_hidx) {
hypothesis const & fact_h = curr_state().get_hypothesis_decl(*fact_hidx);
if (fact_h.is_dead()) {
erase_fact(e);
return none_expr();
} else {
return some_expr(fact_h.get_self());
list<expr> const * find_facts_watching_lemma(hypothesis_idx lemma_hidx) {
return m_lemmas_to_facts.find(lemma_hidx);
}
} else {
return none_expr();
}
}
}
/* Returns a proof of [false], by either applying a projection of [proof] to a hypothesis or vice versa. */
optional<expr> find_live_disproof_of_conjunction(expr const & e, expr const & proof) {
expr A, B;
if (is_and(e, A, B)) {
if (auto A_false = find_live_disproof_of_conjunction(A, get_app_builder().mk_app(get_and_elim_left_name(), {A, B, proof}))) {
return some_expr(*A_false);
} else if (auto B_false = find_live_disproof_of_conjunction(B, get_app_builder().mk_app(get_and_elim_right_name(), {A, B, proof}))) {
return some_expr(*B_false);
} else {
return none_expr();
}
} else {
expr not_e;
bool not_e_is_not = false;
if (!blast::is_not(e, not_e)) {
not_e_is_not = true;
not_e = get_app_builder().mk_not(e);
}
hypothesis_idx const * fact_hidx = find_fact(not_e);
if (fact_hidx) {
hypothesis const & fact_h = curr_state().get_hypothesis_decl(*fact_hidx);
if (fact_h.is_dead()) {
erase_fact(e);
return none_expr();
} else {
if (not_e_is_not) return some_expr(mk_app(fact_h.get_self(), proof));
else return some_expr(mk_app(proof, fact_h.get_self()));
}
} else {
return none_expr();
void unwatch(hypothesis_idx lemma_hidx, expr const & fact_type) {
m_lemmas_to_facts.filter(lemma_hidx, [&](expr const & fact_type2) {
return fact_type != fact_type2;
});
m_facts_to_lemmas.erase(fact_type, lemma_hidx);
}
hypothesis_idx const * find_fact(expr const & fact_type) {
return m_facts.find(fact_type);
}
void watch(hypothesis_idx lemma_hidx, expr const & fact_type) {
m_lemmas_to_facts.insert(lemma_hidx, fact_type);
m_facts_to_lemmas.insert(fact_type, lemma_hidx);
}
};
@ -151,72 +116,178 @@ static unit_branch_extension & get_extension() {
return static_cast<unit_branch_extension&>(curr_state().get_extension(g_ext_id));
}
action_result unit_pi(expr const & _type, expr const & proof) {
unit_branch_extension & ext = get_extension();
bool missing_argument = false;
bool has_antecedent = false;
expr type = _type;
expr new_hypothesis = proof;
expr local;
/* Recall the general form of the lemmas we handle in this module:
A_1 -> ... -> A_n -> B_1 \/ (B2 \/ ... \/ B_m)...)
while (is_pi(type) && is_prop(binding_domain(type)) && closed(binding_body(type))) {
has_antecedent = true;
optional<expr> fact = ext.find_live_fact_in_disjunction(binding_domain(type));
if (fact) {
new_hypothesis = mk_app(new_hypothesis, *fact);
} else {
if (missing_argument) return action_result::failed();
local = mk_fresh_local(binding_domain(type));
new_hypothesis = mk_app(new_hypothesis, local);
missing_argument = true;
There are three different scenarios in which we propagate:
(1) We have all of the A_i, and the negations of all but the last B_j.
(2) We are missing an A_i.
(3) We are missing a B_j.
The first thing we do is check whether or not we are able to propagate.
If so, we start instantiating the A_i. If we hit a missing literal,
we store the proof so far, create a local for the consequent, prove false,
and then conclude with [lemma imp_right : (A B) ¬ B ¬ A].
If we instantiate all the A_i, we start using [lemma or_resolve_left : A B ¬ A B]
to cross of the B_j. If we have all but the last one, we simply return the resulting proof.
If we are missing a B_j, we store the proof so far, create a local for the right-hand-side of
the disjunct, prove false, and then conclude with [lemma or_resolve_right : A B ¬ B A].
*/
bool can_propagate(expr const & _type, buffer<expr, 2> & to_watch) {
lean_assert(is_lemma(_type));
expr type = _type;
unsigned num_watching = 0;
unit_branch_extension & ext = get_extension();
/* Traverse the A_i */
while (is_pi(type) && closed(binding_body(type))) {
expr arg;
hypothesis_idx const * fact_hidx = ext.find_fact(binding_domain(type));
if (!fact_hidx) {
to_watch.push_back(binding_domain(type));
num_watching++;
if (num_watching == 2) return false;
}
type = binding_body(type);
}
if (!has_antecedent) {
return action_result::failed();
} else if (!missing_argument) {
curr_state().mk_hypothesis(type, new_hypothesis);
return action_result::new_branch();
} else if (is_prop(type)) {
optional<expr> disproof = ext.find_live_disproof_of_conjunction(type, new_hypothesis);
if (disproof) {
curr_state().mk_hypothesis(get_app_builder().mk_not(infer_type(local)),
Fun(local, *disproof));
return action_result::new_branch();
} else {
/* Traverse the B_j */
expr lhs, rhs;
while (is_or(type, lhs, rhs)) {
hypothesis_idx const * fact_hidx = ext.find_fact(flip(lhs));
if (!fact_hidx) {
to_watch.push_back(flip(lhs));
num_watching++;
if (num_watching == 2) return false;
}
type = rhs;
}
hypothesis_idx const * fact_hidx = ext.find_fact(flip(type));
if (!fact_hidx) {
to_watch.push_back(flip(type));
num_watching++;
if (num_watching == 2) return false;
}
return true;
}
action_result unit_lemma(hypothesis_idx hidx, expr const & _type, expr const & _proof) {
lean_assert(is_lemma(_type));
unit_branch_extension & ext = get_extension();
/* (1) Find the facts that are watching this lemma and clear them. */
list<expr> const * watching = ext.find_facts_watching_lemma(hidx);
if (watching) {
lean_assert(length(*watching) == 2);
// TODO(dhs): is it safe to remove from these lists while I am iterating them with [for_each]?
for_each(*watching, [&](expr const & fact) { ext.unwatch(hidx, fact); });
}
/* (2) Check if we can propagate */
buffer<expr, 2> to_watch;
if (!can_propagate(_type, to_watch)) {
for (expr const & e : to_watch) ext.watch(hidx, e);
return action_result::failed();
}
expr type = _type;
expr proof = _proof;
expr final_type;
expr proof_left;
expr proof_init_right;
expr type_init_right;
bool missing_A = false;
bool missing_B = false;
/* (3) Traverse the binding domains */
while (is_pi(type) && closed(binding_body(type))) {
hypothesis_idx const * fact_hidx = ext.find_fact(binding_domain(type));
if (fact_hidx) {
proof = mk_app(proof, curr_state().get_hypothesis_decl(*fact_hidx).get_self());
} else {
return action_result::failed();
lean_assert(!missing_A);
missing_A = true;
final_type = get_app_builder().mk_not(binding_domain(type));
proof_left = proof;
type_init_right = binding_body(type);
proof_init_right = mk_fresh_local(type_init_right);
proof = proof_init_right;
}
lean_unreachable();
type = binding_body(type);
}
/* (4) Traverse the conclusion */
expr lhs, rhs;
while (is_or(type, lhs, rhs)) {
hypothesis_idx const * fact_hidx = ext.find_fact(flip(lhs));
if (fact_hidx) {
expr arg = curr_state().get_hypothesis_decl(*fact_hidx).get_self();
if (is_not(lhs)) {
proof = get_app_builder().mk_app(get_or_neg_resolve_left_name(),
proof, arg);
} else {
proof = get_app_builder().mk_app(get_or_resolve_left_name(),
proof, arg);
}
} else {
lean_assert(!missing_A);
lean_assert(!missing_B);
missing_B = true;
final_type = lhs;
proof_left = proof;
type_init_right = rhs;
proof_init_right = mk_fresh_local(type_init_right);
proof = proof_init_right;
}
type = rhs;
}
expr final_proof;
if (missing_A || missing_B) {
hypothesis_idx const * fact_hidx = ext.find_fact(flip(type));
lean_assert(fact_hidx);
expr arg = curr_state().get_hypothesis_decl(*fact_hidx).get_self();
if (is_not(type)) proof = mk_app(proof, arg);
else proof = mk_app(arg, proof);
expr proof_right = get_app_builder().mk_app(get_not_wrap_name(), type_init_right, Fun(proof_init_right, proof));
if (missing_A) {
final_proof = get_app_builder().mk_app(get_implies_resolve_name(), proof_left, proof_right);
} else {
final_proof = get_app_builder().mk_app(get_or_resolve_right_name(), proof_left, proof_right);
}
} else {
final_type = type;
final_proof = proof;
}
curr_state().mk_hypothesis(final_type, final_proof);
return action_result::new_branch();
}
action_result unit_fact(expr const & type) {
unit_branch_extension & ext = get_extension();
list<hypothesis_idx> const * lemmas = ext.find_lemmas(type);
list<hypothesis_idx> const * lemmas = ext.find_lemmas_watching_fact(type);
if (!lemmas) return action_result::failed();
bool success = false;
ext.filter_lemmas(type, [&](hypothesis_idx const & hidx) {
for_each(*lemmas, [&](hypothesis_idx const & hidx) {
hypothesis const & h = curr_state().get_hypothesis_decl(hidx);
if (h.is_dead()) {
return false;
} else {
action_result r = unit_pi(whnf(h.get_type()), h.get_self());
action_result r = unit_lemma(hidx, whnf(h.get_type()), h.get_self());
success = success || (r.get_kind() == action_result::NewBranch);
return true;
}
});
if (success) return action_result::new_branch();
else return action_result::failed();
}
action_result unit_action(unsigned _hidx) {
hypothesis const & h = curr_state().get_hypothesis_decl(_hidx);
action_result unit_action(unsigned hidx) {
hypothesis const & h = curr_state().get_hypothesis_decl(hidx);
expr type = whnf(h.get_type());
if (is_pi(type)) return unit_pi(type, h.get_self());
else if (is_prop(type)) return unit_fact(type);
if (is_lemma(type)) return unit_lemma(hidx, type, h.get_self());
else if (is_fact(type)) return unit_fact(type);
else return action_result::failed();
}
}}

View file

@ -8,18 +8,15 @@ Author: Daniel Selsam
namespace lean {
namespace blast {
/* \brief Propagates lemmas of the form
<tt>(A11 \/ ... \/ ...) -> ... -> (Am1 \/ ... \/ ...) -> (B1 /\ ... /\ ...)</tt>
where each <tt>A</tt> and <tt>B</tt> can be any propositions, and can optionally
be negated.
/* \brief The unit module handles lemmas of the form
<tt>A_1 -> ... -> A_n -> B_1 \/ (B2 \/ ... \/ B_m)...)</tt>
If we can find one disjunct for every antecedent, we instantiate the lemma
fully. On the other hand, if we can find one disjunct for all but one
antecedents, and one fact that disproves the conjunctive conclusion,
we conclude the negation of the missing disjunctive argument.
Whenever all but one of the literals is present as a hypothesis with
the appropriate polarity, we instantiate and resolve and necessary
to conclude a new literal.
Remark: conjunctions in the antecedents and disjunctions in the conclusion are
both treated as monolithic propositions, so some pre-processing may be necessary.
Remark: we assume that a pre-processing step will put lemmas
into the above form when possible.
*/
action_result unit_action(unsigned hidx);

View file

@ -66,6 +66,7 @@ name const * g_iff_elim_left = nullptr;
name const * g_iff_elim_right = nullptr;
name const * g_iff_false_intro = nullptr;
name const * g_iff_true_intro = nullptr;
name const * g_implies_resolve = nullptr;
name const * g_implies = nullptr;
name const * g_implies_of_if_pos = nullptr;
name const * g_implies_of_if_neg = nullptr;
@ -81,6 +82,7 @@ name const * g_nat_succ = nullptr;
name const * g_nat_zero = nullptr;
name const * g_neg = nullptr;
name const * g_not = nullptr;
name const * g_not_wrap = nullptr;
name const * g_not_of_iff_false = nullptr;
name const * g_num = nullptr;
name const * g_num_zero = nullptr;
@ -94,6 +96,11 @@ name const * g_or = nullptr;
name const * g_or_elim = nullptr;
name const * g_or_intro_left = nullptr;
name const * g_or_intro_right = nullptr;
name const * g_or_rec = nullptr;
name const * g_or_resolve_left = nullptr;
name const * g_or_resolve_right = nullptr;
name const * g_or_neg_resolve_left = nullptr;
name const * g_or_neg_resolve_right = nullptr;
name const * g_poly_unit = nullptr;
name const * g_poly_unit_star = nullptr;
name const * g_pos_num = nullptr;
@ -245,6 +252,7 @@ void initialize_constants() {
g_iff_elim_right = new name{"iff", "elim_right"};
g_iff_false_intro = new name{"iff_false_intro"};
g_iff_true_intro = new name{"iff_true_intro"};
g_implies_resolve = new name{"implies", "resolve"};
g_implies = new name{"implies"};
g_implies_of_if_pos = new name{"implies_of_if_pos"};
g_implies_of_if_neg = new name{"implies_of_if_neg"};
@ -260,6 +268,7 @@ void initialize_constants() {
g_nat_zero = new name{"nat", "zero"};
g_neg = new name{"neg"};
g_not = new name{"not"};
g_not_wrap = new name{"not", "wrap"};
g_not_of_iff_false = new name{"not_of_iff_false"};
g_num = new name{"num"};
g_num_zero = new name{"num", "zero"};
@ -273,6 +282,11 @@ void initialize_constants() {
g_or_elim = new name{"or", "elim"};
g_or_intro_left = new name{"or", "intro_left"};
g_or_intro_right = new name{"or", "intro_right"};
g_or_rec = new name{"or", "rec"};
g_or_resolve_left = new name{"or", "resolve_left"};
g_or_resolve_right = new name{"or", "resolve_right"};
g_or_neg_resolve_left = new name{"or", "neg_resolve_left"};
g_or_neg_resolve_right = new name{"or", "neg_resolve_right"};
g_poly_unit = new name{"poly_unit"};
g_poly_unit_star = new name{"poly_unit", "star"};
g_pos_num = new name{"pos_num"};
@ -425,6 +439,7 @@ void finalize_constants() {
delete g_iff_elim_right;
delete g_iff_false_intro;
delete g_iff_true_intro;
delete g_implies_resolve;
delete g_implies;
delete g_implies_of_if_pos;
delete g_implies_of_if_neg;
@ -440,6 +455,7 @@ void finalize_constants() {
delete g_nat_zero;
delete g_neg;
delete g_not;
delete g_not_wrap;
delete g_not_of_iff_false;
delete g_num;
delete g_num_zero;
@ -453,6 +469,11 @@ void finalize_constants() {
delete g_or_elim;
delete g_or_intro_left;
delete g_or_intro_right;
delete g_or_rec;
delete g_or_resolve_left;
delete g_or_resolve_right;
delete g_or_neg_resolve_left;
delete g_or_neg_resolve_right;
delete g_poly_unit;
delete g_poly_unit_star;
delete g_pos_num;
@ -604,6 +625,7 @@ name const & get_iff_elim_left_name() { return *g_iff_elim_left; }
name const & get_iff_elim_right_name() { return *g_iff_elim_right; }
name const & get_iff_false_intro_name() { return *g_iff_false_intro; }
name const & get_iff_true_intro_name() { return *g_iff_true_intro; }
name const & get_implies_resolve_name() { return *g_implies_resolve; }
name const & get_implies_name() { return *g_implies; }
name const & get_implies_of_if_pos_name() { return *g_implies_of_if_pos; }
name const & get_implies_of_if_neg_name() { return *g_implies_of_if_neg; }
@ -619,6 +641,7 @@ name const & get_nat_succ_name() { return *g_nat_succ; }
name const & get_nat_zero_name() { return *g_nat_zero; }
name const & get_neg_name() { return *g_neg; }
name const & get_not_name() { return *g_not; }
name const & get_not_wrap_name() { return *g_not_wrap; }
name const & get_not_of_iff_false_name() { return *g_not_of_iff_false; }
name const & get_num_name() { return *g_num; }
name const & get_num_zero_name() { return *g_num_zero; }
@ -632,6 +655,11 @@ name const & get_or_name() { return *g_or; }
name const & get_or_elim_name() { return *g_or_elim; }
name const & get_or_intro_left_name() { return *g_or_intro_left; }
name const & get_or_intro_right_name() { return *g_or_intro_right; }
name const & get_or_rec_name() { return *g_or_rec; }
name const & get_or_resolve_left_name() { return *g_or_resolve_left; }
name const & get_or_resolve_right_name() { return *g_or_resolve_right; }
name const & get_or_neg_resolve_left_name() { return *g_or_neg_resolve_left; }
name const & get_or_neg_resolve_right_name() { return *g_or_neg_resolve_right; }
name const & get_poly_unit_name() { return *g_poly_unit; }
name const & get_poly_unit_star_name() { return *g_poly_unit_star; }
name const & get_pos_num_name() { return *g_pos_num; }

View file

@ -68,6 +68,7 @@ name const & get_iff_elim_left_name();
name const & get_iff_elim_right_name();
name const & get_iff_false_intro_name();
name const & get_iff_true_intro_name();
name const & get_implies_resolve_name();
name const & get_implies_name();
name const & get_implies_of_if_pos_name();
name const & get_implies_of_if_neg_name();
@ -83,6 +84,7 @@ name const & get_nat_succ_name();
name const & get_nat_zero_name();
name const & get_neg_name();
name const & get_not_name();
name const & get_not_wrap_name();
name const & get_not_of_iff_false_name();
name const & get_num_name();
name const & get_num_zero_name();
@ -96,6 +98,11 @@ name const & get_or_name();
name const & get_or_elim_name();
name const & get_or_intro_left_name();
name const & get_or_intro_right_name();
name const & get_or_rec_name();
name const & get_or_resolve_left_name();
name const & get_or_resolve_right_name();
name const & get_or_neg_resolve_left_name();
name const & get_or_neg_resolve_right_name();
name const & get_poly_unit_name();
name const & get_poly_unit_star_name();
name const & get_pos_num_name();

View file

@ -61,6 +61,7 @@ iff.elim_left
iff.elim_right
iff_false_intro
iff_true_intro
implies.resolve
implies
implies_of_if_pos
implies_of_if_neg
@ -76,6 +77,7 @@ nat.succ
nat.zero
neg
not
not.wrap
not_of_iff_false
num
num.zero
@ -89,6 +91,11 @@ or
or.elim
or.intro_left
or.intro_right
or.rec
or.resolve_left
or.resolve_right
or.neg_resolve_left
or.neg_resolve_right
poly_unit
poly_unit.star
pos_num

View file

@ -304,6 +304,13 @@ expr mk_false_rec(type_checker & tc, expr const & f, expr const & t) {
}
}
bool is_or(expr const & e) {
buffer<expr> args;
expr const & fn = get_app_args(e, args);
if (is_constant(fn) && const_name(fn) == get_or_name() && args.size() == 2) return true;
else return false;
}
bool is_or(expr const & e, expr & A, expr & B) {
buffer<expr> args;
expr const & fn = get_app_args(e, args);

View file

@ -143,6 +143,7 @@ bool is_false(environment const & env, expr const & e);
/** \brief Return an element of type t given an element \c f : false (in standard mode) and empty (in HoTT) mode */
expr mk_false_rec(type_checker & tc, expr const & f, expr const & t);
bool is_or(expr const & e);
bool is_or(expr const & e, expr & A, expr & B);
/** \brief Return true if \c e is of the form <tt>(not arg)</tt>, and store \c arg in \c a.

View file

@ -1,13 +0,0 @@
-- Basic (propositional) forward chaining
constants (A B C D : Prop)
definition lemma1 : A → (A → B) → B := by blast
definition lemma2 : ¬ B → (A → B) → ¬ A := by blast
definition lemma3 : ¬ C → A → (A → B → C) → ¬ B := by blast
definition lemma4 : C → A → (A → B → ¬ C) → ¬ B := by blast
-- TODO(dhs): [forward_action] is responsible for
-- eliminating double negation
definition lemma5 : C → A → (A → ¬ B → ¬ C) → ¬ ¬ B := by blast
definition lemma6 : (A → B → ¬ C) → C → A → ¬ B := by blast
definition lemma7 : ¬ C → (A → B → C) → A → ¬ B := by blast
definition lemma8 : A → (A → B) → C → B ∧ C := by blast

View file

@ -1,9 +0,0 @@
-- Basic (propositional) forward chaining with nested backward chaining
constants (A B C D : Prop)
set_option blast.trace true
set_option blast.init_depth 10
set_option blast.inc_depth 1000
set_option pp.all true
definition lemma1 : A → (A → B) → C → B ∧ C :=
by blast

View file

@ -1,12 +0,0 @@
-- Basic (propositional) forward chaining with clauses
constants (A B C D E : Prop)
set_option blast.recursor false
definition lemma1 : A → (A B → C) → C := by blast
definition lemma2 : B → (A B → C) → C := by blast
definition lemma3 : A → B → (A → B C → D) → D := by blast
definition lemma4 : A → B → (A → B C C → D) → D := by blast
definition lemma5 : A → B → (E A E → E B C C → D) → D := by blast
definition lemma6 : A → (A → B → C) → ¬ C → ¬ B := by blast
definition lemma7 : ¬ D → B → (A → E B C C → D) → ¬ A := by blast
definition lemma8 : ¬ D → B → (A E → E B C C → D) → ¬ (A E) := by blast

View file

@ -1,12 +0,0 @@
-- Basic (propositional) forward chaining with conjunctive conclusions
constants (A B C D E : Prop)
set_option blast.recursor false
definition lemma1 : B → (A → (¬ B) ∧ C) → ¬ A := by blast
definition lemma2 : ¬ B → (A → B ∧ C) → ¬ A := by blast
definition lemma3 : B → (A → C ∧ (¬ B)) → ¬ A := by blast
definition lemma4 : ¬ B → (A → C ∧ B) → ¬ A := by blast
definition lemma5 : B → (A → (¬ B) ∧ E ∧ C) → ¬ A := by blast
definition lemma6 : ¬ B → (A → E ∧ B ∧ C) → ¬ A := by blast
definition lemma7 : B → (A → E ∧ C ∧ (¬ B)) → ¬ A := by blast
definition lemma8 : ¬ B → (A → C ∧ B ∧ E) → ¬ A := by blast

View file

@ -1,10 +0,0 @@
-- Basic (propositional) forward chaining with disjunctive antecedents and conjunctive conclusions
constants (A B C D E F : Prop)
set_option blast.recursor false
definition lemma1 : B → (A E → (¬ B) ∧ C) → ¬ (A E) := by blast
definition lemma2 : ¬ B → (A E → B ∧ C) → ¬ (A E) := by blast
definition lemma3 : A → ¬ D → (A E → B → C ∧ D) → ¬ B := by blast
definition lemma4 : A → ¬ E → (A → B → E ∧ F) → ¬ B := by blast
definition lemma5 : (A → B) → ¬ B → ¬ A := by blast
definition lemma6 : (A → B ∧ C) → ¬ B → ¬ A := by blast

View file

@ -0,0 +1,43 @@
-- Testing all possible cases of [unit_action]
set_option blast.recursor false
variables {A₁ A₂ A₃ A₄ B₁ B₂ B₃ B₄ : Prop}
-- H first, all pos
example (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) : B₄ := by blast
example (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₄) : B₃ := by blast
example (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n3 : ¬ B₃) (n3 : ¬ B₄) : B₂ := by blast
example (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) (a1 : A₁) (a2 : A₂) (a3 : A₃) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) : B₁ := by blast
example (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) (a1 : A₁) (a2 : A₂) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) : ¬ A₃ := by blast
example (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) (a1 : A₁) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) : ¬ A₂ := by blast
example (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) : ¬ A₁ := by blast
-- H last, all pos
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) : B₄ := by blast
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) : B₃ := by blast
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n3 : ¬ B₃) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) : B₂ := by blast
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) : B₁ := by blast
example (a1 : A₁) (a2 : A₂) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) : ¬ A₃ := by blast
example (a1 : A₁) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) : ¬ A₂ := by blast
example (a2 : A₂) (a3 : A₃) (n1 : ¬ B₁) (n2 : ¬ B₂) (n3 : ¬ B₃) (n3 : ¬ B₄) (H : A₁ → A₂ → A₃ → B₁ B₂ B₃ B₄) : ¬ A₁ := by blast
-- H first, all neg
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) : ¬ B₄ := by blast
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b4 : B₄) : ¬ B₃ := by blast
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b3 : B₃) (b4 : B₄) : ¬ B₂ := by blast
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬ B₁ := by blast
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) (n1 : ¬ A₁) (n2 : ¬ A₂) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬ ¬ A₃ := by blast
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) (n1 : ¬ A₁) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬ ¬ A₂ := by blast
example (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬ ¬ A₁ := by blast
-- H last, all neg
example (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) : ¬ B₄ := by blast
example (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) : ¬ B₃ := by blast
example (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b3 : B₃) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) : ¬ B₂ := by blast
example (n1 : ¬ A₁) (n2 : ¬ A₂) (n3 : ¬ A₃) (b2 : B₂) (b3 : B₃) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) : ¬ B₁ := by blast
example (n1 : ¬ A₁) (n2 : ¬ A₂) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) : ¬ ¬ A₃ := by blast
example (n1 : ¬ A₁) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) : ¬ ¬ A₂ := by blast
example (n2 : ¬ A₂) (n3 : ¬ A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) (H : ¬ A₁ → ¬ A₂ → ¬ A₃ → ¬ B₁ ¬ B₂ ¬ B₃ ¬ B₄) : ¬ ¬ A₁ := by blast

View file

@ -1,4 +1,4 @@
-- Basic (propositional) forward chaining with conjunctive conclusions
-- Unit propagation with congruence closure
constants (a b c d e : nat)
constants (p : nat → Prop)
constants (q : nat → nat → Prop)
@ -6,6 +6,8 @@ constants (f : nat → nat)
set_option blast.recursor false
set_option blast.subst false
-- The following tests require the unit preprocessor to work
/-
definition lemma1 : a = d → b = e → p b → (p a → (¬ p e) ∧ p c) → ¬ p d := by blast
definition lemma2a : ¬ p b → (p d → p b ∧ p c) → d = e → e = a → ¬ p a := by blast
definition lemma2b : ¬ p (f b) → (p (f a) → p (f d) ∧ p (f c)) → b = d → ¬ p (f a) := by blast
@ -15,3 +17,4 @@ definition lemma4b : b = f b → ¬ p (f (f b)) → (p a → q c c ∧ q e c ∧
by blast
definition lemma5 : p b → (p (f a) → (¬ p b) ∧ p e ∧ p c) → ¬ p (f a) := by blast
definition lemma6 : ¬ (q b a) → d = a → (p a → p e ∧ (q b d) ∧ p c) → ¬ p a := by blast
-/