feat(theories/{analysis, topology}): show eps-delta and topological continuity coincide on metric spaces
This commit is contained in:
parent
eb05741ce6
commit
2c56a2c48b
2 changed files with 258 additions and 78 deletions
|
@ -276,34 +276,6 @@ proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] :
|
|||
(f ⟶ limit_at f x at x) :=
|
||||
some_spec H
|
||||
|
||||
/- continuity at a point -/
|
||||
|
||||
definition continuous_at (f : M → N) (x : M) :=
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε
|
||||
|
||||
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) :
|
||||
continuous_at f x :=
|
||||
take ε, suppose ε > 0,
|
||||
obtain δ Hδ, from Hf this,
|
||||
exists.intro δ (and.intro
|
||||
(and.left Hδ)
|
||||
(take x', suppose dist x' x < δ,
|
||||
if Heq : x' = x then
|
||||
by rewrite [-Heq, dist_self]; assumption
|
||||
else
|
||||
(suffices dist x' x < δ, from and.right Hδ x' (and.intro Heq this),
|
||||
this)))
|
||||
|
||||
theorem converges_to_at_of_continuous_at {f : M → N} {x : M} (Hf : continuous_at f x) :
|
||||
f ⟶ f x at x :=
|
||||
take ε, suppose ε > 0,
|
||||
obtain δ Hδ, from Hf this,
|
||||
exists.intro δ (and.intro
|
||||
(and.left Hδ)
|
||||
(take x',
|
||||
assume H : x' ≠ x ∧ dist x' x < δ,
|
||||
show dist (f x') (f x) < ε, from and.right Hδ x' (and.right H)))
|
||||
|
||||
section
|
||||
omit strucN
|
||||
set_option pp.coercions true
|
||||
|
@ -445,40 +417,12 @@ theorem converges_to_at_of_all_conv_seqs {f : M → N} (c : M) (l : N)
|
|||
assumption
|
||||
end)
|
||||
|
||||
definition continuous (f : M → N) : Prop := ∀ x, continuous_at f x
|
||||
|
||||
theorem converges_seq_comp_of_converges_seq_of_cts [instance] (X : ℕ → M) [HX : converges_seq X] {f : M → N}
|
||||
(Hf : continuous f) :
|
||||
converges_seq (λ n, f (X n)) :=
|
||||
begin
|
||||
cases HX with xlim Hxlim,
|
||||
existsi f xlim,
|
||||
rewrite ↑converges_to_seq at *,
|
||||
intros ε Hε,
|
||||
let Hcont := Hf xlim Hε,
|
||||
cases Hcont with δ Hδ,
|
||||
cases Hxlim (and.left Hδ) with B HB,
|
||||
existsi B,
|
||||
intro n Hn,
|
||||
apply and.right Hδ,
|
||||
apply HB Hn
|
||||
end
|
||||
|
||||
omit strucN
|
||||
|
||||
theorem id_continuous : continuous (λ x : M, x) :=
|
||||
begin
|
||||
intros x ε Hε,
|
||||
existsi ε,
|
||||
split,
|
||||
assumption,
|
||||
intros,
|
||||
assumption
|
||||
end
|
||||
|
||||
end metric_space_M_N
|
||||
|
||||
section topology
|
||||
/- A metric space is a topological space. -/
|
||||
|
||||
open set prod topology
|
||||
|
||||
variables {V : Type} [Vmet : metric_space V]
|
||||
|
@ -486,6 +430,23 @@ include Vmet
|
|||
|
||||
definition open_ball (x : V) (ε : ℝ) := {y ∈ univ | dist x y < ε}
|
||||
|
||||
theorem open_ball_empty_of_nonpos (x : V) {ε : ℝ} (Hε : ε ≤ 0) : open_ball x ε = ∅ :=
|
||||
begin
|
||||
apply eq_empty_of_forall_not_mem,
|
||||
intro y Hy,
|
||||
note Hlt := and.right Hy,
|
||||
apply not_lt_of_ge (dist_nonneg x y),
|
||||
apply lt_of_lt_of_le Hlt Hε
|
||||
end
|
||||
|
||||
theorem radius_pos_of_nonempty {x : V} {ε : ℝ} {u : V} (Hu : u ∈ open_ball x ε) : ε > 0 :=
|
||||
begin
|
||||
apply lt_of_not_ge,
|
||||
intro Hge,
|
||||
note Hop := open_ball_empty_of_nonpos x Hge,
|
||||
rewrite Hop at Hu,
|
||||
apply not_mem_empty _ Hu
|
||||
end
|
||||
|
||||
theorem mem_open_ball (x : V) {ε : ℝ} (H : ε > 0) : x ∈ open_ball x ε :=
|
||||
suffices x ∈ univ ∧ dist x x < ε, from this,
|
||||
|
@ -517,35 +478,18 @@ theorem closed_ball_eq_comp (x : V) (ε : ℝ) : closed_ball x ε = -{y ∈ univ
|
|||
end
|
||||
|
||||
omit Vmet
|
||||
|
||||
definition open_sets_basis (V : Type) [metric_space V] :=
|
||||
image (λ pair : V × ℝ, open_ball (pr1 pair) (pr2 pair)) univ
|
||||
|
||||
definition open_sets (V : Type) [metric_space V] := opens_generated_by (open_sets_basis V)
|
||||
|
||||
theorem univ_in_opens (V : Type) [metric_space V] : univ ∈ open_sets V :=
|
||||
!opens_generated_by.univ_mem
|
||||
definition metric_topology [instance] (V : Type) [metric_space V] : topology V :=
|
||||
topology.generated_by (open_sets_basis V)
|
||||
|
||||
include Vmet
|
||||
|
||||
theorem open_ball_mem_open_sets_basis (x : V) (ε : ℝ) : (open_ball x ε) ∈ (open_sets_basis V) :=
|
||||
mem_image !mem_univ rfl
|
||||
|
||||
theorem sUnion_in_opens {S : set (set V)} (HS : S ⊆ open_sets V) : ⋃₀ S ∈ open_sets V :=
|
||||
opens_generated_by.sUnion_mem HS
|
||||
|
||||
theorem inter_in_opens : ∀₀ S ∈ open_sets V, ∀₀ T ∈ open_sets V, S ∩ T ∈ open_sets V :=
|
||||
begin intros, apply opens_generated_by.inter_mem, repeat eassumption end
|
||||
|
||||
omit Vmet
|
||||
definition norm_topology [instance] (V : Type) [metric_space V] : topology V :=
|
||||
⦃ topology,
|
||||
opens := open_sets V,
|
||||
univ_mem_opens := univ_in_opens V,
|
||||
sUnion_mem_opens := by intros; apply sUnion_in_opens; assumption, -- weird
|
||||
inter_mem_opens := inter_in_opens
|
||||
⦄
|
||||
include Vmet
|
||||
|
||||
theorem open_ball_open (x : V) (ε : ℝ) : Open (open_ball x ε) :=
|
||||
by apply generators_mem_topology_generated_by; apply open_ball_mem_open_sets_basis
|
||||
|
||||
|
@ -578,8 +522,228 @@ theorem closed_ball_closed (x : V) {ε : ℝ} (H : ε > 0) : closed (closed_ball
|
|||
... = dist x y : by rewrite [add.comm, sub_add_cancel]
|
||||
end
|
||||
|
||||
theorem not_open_of_ex_boundary_pt {U : set V} {x : V} (HxU : x ∈ U)
|
||||
(Hbd : ∀ ε : ℝ, ε > 0 → ∃ v : V, v ∉ U ∧ dist x v < ε) : ¬ Open U :=
|
||||
begin
|
||||
intro HUopen,
|
||||
induction HUopen,
|
||||
{cases a with pr Hpr,
|
||||
cases pr with y r,
|
||||
cases Hpr with _ Hs,
|
||||
rewrite -Hs at HxU,
|
||||
have H : dist y x < r, from and.right HxU,
|
||||
cases Hbd _ (sub_pos_of_lt H) with v Hv,
|
||||
cases Hv with Hv Hvdist,
|
||||
apply Hv,
|
||||
rewrite -Hs,
|
||||
apply and.intro,
|
||||
apply mem_univ,
|
||||
apply lt_of_le_of_lt,
|
||||
apply dist_triangle,
|
||||
exact x,
|
||||
esimp,
|
||||
exact calc
|
||||
dist y x + dist x v < dist y x + (r - dist y x) : add_lt_add_left Hvdist
|
||||
... = r : by rewrite [add.comm, sub_add_cancel]},
|
||||
{cases Hbd 1 zero_lt_one with v Hv,
|
||||
cases Hv with Hv _,
|
||||
exact Hv !mem_univ},
|
||||
{have Hxs : x ∈ s, from mem_of_mem_inter_left HxU,
|
||||
have Hxt : x ∈ t, from mem_of_mem_inter_right HxU,
|
||||
note Hsih := exists_not_of_not_forall (v_0 Hxs),
|
||||
note Htih := exists_not_of_not_forall (v_1 Hxt),
|
||||
cases Hsih with ε1 Hε1,
|
||||
cases Htih with ε2 Hε2,
|
||||
note Hε1' := iff.mp not_implies_iff_and_not Hε1,
|
||||
note Hε2' := iff.mp not_implies_iff_and_not Hε2,
|
||||
cases Hε1' with Hε1p Hε1',
|
||||
cases Hε2' with Hε2p Hε2',
|
||||
note Hε1'' := forall_not_of_not_exists Hε1',
|
||||
note Hε2'' := forall_not_of_not_exists Hε2',
|
||||
have Hmin : min ε1 ε2 > 0, from lt_min Hε1p Hε2p,
|
||||
cases Hbd _ Hmin with v Hv,
|
||||
cases Hv with Hvint Hvdist,
|
||||
note Hε1v := Hε1'' v,
|
||||
note Hε2v := Hε2'' v,
|
||||
cases em (v ∉ s) with Hnm Hmem,
|
||||
apply Hε1v,
|
||||
split,
|
||||
exact Hnm,
|
||||
apply lt_of_lt_of_le Hvdist,
|
||||
apply min_le_left,
|
||||
apply Hε2v,
|
||||
have Hmem' : v ∈ s, from not_not_elim Hmem,
|
||||
note Hnm := not_mem_of_mem_of_not_mem_inter_left Hmem' Hvint,
|
||||
split,
|
||||
exact Hnm,
|
||||
apply lt_of_lt_of_le Hvdist,
|
||||
apply min_le_right},
|
||||
{have Hex : ∃₀ s ∈ S, x ∈ s, from HxU,
|
||||
cases Hex with s Hs,
|
||||
cases Hs with Hs Hxs,
|
||||
cases exists_not_of_not_forall (v_0 Hs Hxs) with ε Hε,
|
||||
cases iff.mp not_implies_iff_and_not Hε with Hεp Hv,
|
||||
cases Hbd _ Hεp with v Hv',
|
||||
cases Hv' with Hvnm Hdist,
|
||||
apply Hv,
|
||||
existsi v,
|
||||
split,
|
||||
apply not_mem_of_not_mem_sUnion Hvnm Hs,
|
||||
exact Hdist}
|
||||
end
|
||||
|
||||
theorem ex_Open_ball_subset_of_Open_of_nonempty {U : set V} (HU : Open U) {x : V} (Hx : x ∈ U) :
|
||||
∃ (r : ℝ), r > 0 ∧ open_ball x r ⊆ U :=
|
||||
begin
|
||||
let balloon := {r ∈ univ | r > 0 ∧ open_ball x r ⊆ U},
|
||||
cases em (balloon = ∅),
|
||||
have H : ∀ r : ℝ, r > 0 → ∃ v : V, v ∉ U ∧ dist x v < r, begin
|
||||
intro r Hr,
|
||||
note Hor := iff.mp not_and_iff_not_or_not (forall_not_of_sep_empty a (mem_univ r)),
|
||||
note Hor' := or.neg_resolve_left Hor Hr,
|
||||
apply exists_of_not_forall_not,
|
||||
intro Hall,
|
||||
apply Hor',
|
||||
intro y Hy,
|
||||
cases iff.mp not_and_iff_not_or_not (Hall y) with Hmem Hge,
|
||||
apply not_not_elim Hmem,
|
||||
apply absurd (and.right Hy) Hge
|
||||
end,
|
||||
apply absurd HU,
|
||||
apply not_open_of_ex_boundary_pt Hx H,
|
||||
cases exists_mem_of_ne_empty a with r Hr,
|
||||
cases Hr with _ Hr,
|
||||
cases Hr with Hrpos HxrU,
|
||||
existsi r,
|
||||
split,
|
||||
repeat assumption
|
||||
end
|
||||
|
||||
end topology
|
||||
|
||||
section continuity
|
||||
variables {M N : Type} [Hm : metric_space M] [Hn : metric_space N]
|
||||
include Hm Hn
|
||||
open topology set
|
||||
/- continuity at a point -/
|
||||
|
||||
--definition continuous_at (f : M → N) (x : M) :=
|
||||
--topology.continuous_at f x
|
||||
|
||||
-- the ε - δ definition of continuity is equivalent to the topological definition
|
||||
theorem continuous_at_intro (f : M → N) (x : M)
|
||||
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε) :
|
||||
continuous_at f x :=
|
||||
begin
|
||||
rewrite ↑continuous_at,
|
||||
intros U HfU Uopen,
|
||||
cases ex_Open_ball_subset_of_Open_of_nonempty Uopen HfU with r Hr,
|
||||
cases Hr with Hr HUr,
|
||||
cases H Hr with δ Hδ,
|
||||
cases Hδ with Hδ Hx'δ,
|
||||
existsi open_ball x δ,
|
||||
split,
|
||||
apply mem_open_ball,
|
||||
exact Hδ,
|
||||
split,
|
||||
apply open_ball_open,
|
||||
intro y Hy,
|
||||
apply HUr,
|
||||
cases Hy with y' Hy',
|
||||
cases Hy' with Hy' Hfy',
|
||||
cases Hy' with _ Hy',
|
||||
rewrite dist_comm at Hy',
|
||||
note Hy'' := Hx'δ Hy',
|
||||
apply and.intro !mem_univ,
|
||||
rewrite [-Hfy', dist_comm],
|
||||
exact Hy''
|
||||
end
|
||||
|
||||
theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) :
|
||||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε :=
|
||||
begin
|
||||
intros ε Hε,
|
||||
rewrite [↑continuous_at at Hfx],
|
||||
cases Hfx (open_ball (f x) ε) (mem_open_ball _ Hε) !open_ball_open with V HV,
|
||||
cases HV with HVx HV,
|
||||
cases HV with HV HVf,
|
||||
cases ex_Open_ball_subset_of_Open_of_nonempty HV HVx with δ Hδ,
|
||||
cases Hδ with Hδ Hδx,
|
||||
existsi δ,
|
||||
split,
|
||||
exact Hδ,
|
||||
intro x' Hx',
|
||||
rewrite dist_comm,
|
||||
apply and.right,
|
||||
apply HVf,
|
||||
existsi x',
|
||||
split,
|
||||
apply Hδx,
|
||||
apply and.intro !mem_univ,
|
||||
rewrite dist_comm,
|
||||
apply Hx',
|
||||
apply rfl
|
||||
end
|
||||
|
||||
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) :
|
||||
continuous_at f x :=
|
||||
continuous_at_intro _ _
|
||||
(take ε, suppose ε > 0,
|
||||
obtain δ Hδ, from Hf this,
|
||||
exists.intro δ (and.intro
|
||||
(and.left Hδ)
|
||||
(take x', suppose dist x' x < δ,
|
||||
if Heq : x' = x then
|
||||
by rewrite [-Heq, dist_self]; assumption
|
||||
else
|
||||
(suffices dist x' x < δ, from and.right Hδ x' (and.intro Heq this),
|
||||
this))))
|
||||
|
||||
theorem converges_to_at_of_continuous_at {f : M → N} {x : M} (Hf : continuous_at f x) :
|
||||
f ⟶ f x at x :=
|
||||
take ε, suppose ε > 0,
|
||||
obtain δ Hδ, from continuous_at_elim Hf this,
|
||||
exists.intro δ (and.intro
|
||||
(and.left Hδ)
|
||||
(take x',
|
||||
assume H : x' ≠ x ∧ dist x' x < δ,
|
||||
show dist (f x') (f x) < ε, from and.right Hδ x' (and.right H)))
|
||||
|
||||
|
||||
definition continuous (f : M → N) : Prop := ∀ x, continuous_at f x
|
||||
|
||||
theorem converges_seq_comp_of_converges_seq_of_cts [instance] (X : ℕ → M) [HX : converges_seq X] {f : M → N}
|
||||
(Hf : continuous f) :
|
||||
converges_seq (λ n, f (X n)) :=
|
||||
begin
|
||||
cases HX with xlim Hxlim,
|
||||
existsi f xlim,
|
||||
rewrite ↑converges_to_seq at *,
|
||||
intros ε Hε,
|
||||
let Hcont := (continuous_at_elim (Hf xlim)) Hε,
|
||||
cases Hcont with δ Hδ,
|
||||
cases Hxlim (and.left Hδ) with B HB,
|
||||
existsi B,
|
||||
intro n Hn,
|
||||
apply and.right Hδ,
|
||||
apply HB Hn
|
||||
end
|
||||
|
||||
omit Hn
|
||||
theorem id_continuous : continuous (λ x : M, x) :=
|
||||
begin
|
||||
intros x,
|
||||
apply continuous_at_intro,
|
||||
intro ε Hε,
|
||||
existsi ε,
|
||||
split,
|
||||
assumption,
|
||||
intros,
|
||||
assumption
|
||||
end
|
||||
|
||||
end continuity
|
||||
|
||||
end analysis
|
||||
|
||||
/- complete metric spaces -/
|
||||
|
|
|
@ -241,4 +241,20 @@ theorem topology_generated_by_initial {X : Type} {B : set (set X)} {T : topology
|
|||
@Open _ T s :=
|
||||
opens_generated_by_initial H H1
|
||||
|
||||
section continuity
|
||||
|
||||
/- continuous mappings -/
|
||||
/- continuity at a point -/
|
||||
|
||||
variables {M N : Type} [Tm : topology M] [Tn : topology N]
|
||||
include Tm Tn
|
||||
|
||||
definition continuous_at (f : M → N) (x : M) :=
|
||||
∀ U : set N, f x ∈ U → Open U → ∃ V : set M, x ∈ V ∧ Open V ∧ f 'V ⊆ U
|
||||
|
||||
definition continuous (f : M → N) :=
|
||||
∀ x : M, continuous_at f x
|
||||
|
||||
end continuity
|
||||
|
||||
end topology
|
||||
|
|
Loading…
Reference in a new issue