diff --git a/library/theories/commutative_algebra/commutative_algebra.md b/library/theories/commutative_algebra/commutative_algebra.md new file mode 100644 index 000000000..e2a91779a --- /dev/null +++ b/library/theories/commutative_algebra/commutative_algebra.md @@ -0,0 +1,4 @@ +theories.commutative_algebra +============================ + +* [ideal](ideal.lean) diff --git a/library/theories/commutative_algebra/ideal.lean b/library/theories/commutative_algebra/ideal.lean new file mode 100644 index 000000000..b1755fc58 --- /dev/null +++ b/library/theories/commutative_algebra/ideal.lean @@ -0,0 +1,671 @@ +/- +Copyright (c) 2016 Marcos Mazari. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Ideals and quotient rings. + +Authors: Marcos Mazari, Jeremy Avigad +-/ +import data.set algebra.ring theories.move +open function eq.ops algebra set classical + +/- TODO: move -/ + +abbreviation contrapos := @not_imp_not_of_imp + +lemma ne_of_not_mem_of_mem {A : Type} {I J : set A} {y : A} (H1 : y ∉ I) (H2 : y ∈ J) : I ≠ J := +by intro H; rewrite H at H1; exact H1 H2 + +lemma exists_mem_and_not_mem_of_not_subset {A : Type} {I J : set A} (H : ¬ J ⊆ I) : + ∃ y, y ∈ J ∧ y ∉ I := +obtain x (Hx : ¬ (x ∈ J → x ∈ I)), from exists_not_of_not_forall H, +exists.intro x (and_not_of_not_implies Hx) + +lemma exists_mem_and_not_mem_of_ne_of_subset {A : Type} {I J : set A} (H1 : I ≠ J) (H2 : I ⊆ J) : + ∃ y, y ∈ J ∧ y ∉ I := +exists_mem_and_not_mem_of_not_subset (assume H, H1 (eq_of_subset_of_subset H2 H)) + +/- TODO: move to file for additive subgroups -/ + +section + +variable {A : Type} + +structure is_zero_closed [class] [has_zero A] (S : set A) : Prop := +(zero_mem : zero ∈ S) + +proposition zero_mem [has_zero A] {S : set A} [is_zero_closed S] : 0 ∈ S := +is_zero_closed.zero_mem _ S + +structure is_add_closed [class] [has_add A] (S : set A) : Prop := +(add_mem : ∀₀ a ∈ S, ∀₀ b ∈ S, a + b ∈ S) + +proposition add_mem [has_add A] {S : set A} [is_add_closed S] {a : A} (aS : a ∈ S) {b : A} + (bS : b ∈ S) : + a + b ∈ S := +is_add_closed.add_mem _ S aS bS + +structure is_neg_closed [class] [has_neg A] (S : set A) : Prop := +(neg_mem : ∀₀ a ∈ S, -a ∈ S) + +proposition neg_mem [has_neg A] {S : set A} [is_neg_closed S] {a : A} (aS : a ∈ S) : -a ∈ S := +is_neg_closed.neg_mem _ S aS + +proposition mem_of_neg_mem [add_group A] {S : set A} [is_neg_closed S] {a : A} (naS : -a ∈ S) : + a ∈ S := +by rewrite -neg_neg; exact neg_mem naS + +proposition neg_mem_iff [add_group A] {S : set A} [is_neg_closed S] (a : A) : -a ∈ S ↔ a ∈ S := +iff.intro mem_of_neg_mem neg_mem + +proposition sub_mem_swap [add_group A] {S : set A} [is_neg_closed S] {a b : A} (H : b - a ∈ S) : + a - b ∈ S := +mem_of_neg_mem (by rewrite neg_sub; assumption) + +proposition sub_mem_iff [add_group A] {S : set A} [is_neg_closed S] (a b : A) : + a - b ∈ S ↔ b - a ∈ S := +iff.intro sub_mem_swap sub_mem_swap + +structure is_add_subgroup [class] [add_group A] (S : set A) + extends is_zero_closed S, is_add_closed S, is_neg_closed S : Prop + +definition set_add [has_add A] (S T : set A) : set A := {x | ∃₀ y ∈ S, ∃₀ z ∈ T, x = y + z} + +end + +namespace set_add + infix + := set_add +end set_add +open set_add + +section + +variables {A : Type} + +proposition mem_set_add [has_add A] {S T : set A} {a b c : A} + (aS : a ∈ S) (bT : b ∈ T) (ceq : c = a + b) : + c ∈ S + T := +exists.intro a (and.intro aS (exists.intro b (and.intro bT ceq))) + +proposition subset_set_add_right [add_monoid A] (S T : set A) [is_zero_closed T] : S ⊆ S + T := +take a, assume aS, mem_set_add aS zero_mem (by simp) + +proposition subset_set_add_left [add_monoid A] (S T : set A) [is_zero_closed S] : T ⊆ S + T := +take a, assume aT, mem_set_add zero_mem aT (by simp) + +end + +section +variable {A : Type} +variable [comm_ring A] + +structure is_ideal [class] (I : set A) extends is_zero_closed I, is_add_closed I : Prop := +(mul_arb_mem : ∀ x, ∀₀ y ∈ I, x * y ∈ I) + +proposition mul_arb_mem {I : set A} [is_ideal I] (x : A) {y : A} (yI : y ∈ I) : x * y ∈ I := +is_ideal.mul_arb_mem _ I x yI + +proposition is_add_subgroup_of_is_ideal [instance] (I : set A) [is_ideal I] : is_add_subgroup I := +is_add_subgroup.mk zero_mem (@add_mem _ _ _ _) + (λ a aI, by rewrite [neg_eq_neg_one_mul]; apply mul_arb_mem _ aI) + +proposition mul_arb_mem' {I : set A} [H : is_ideal I] {x : A} (xI : x ∈ I) (y : A) : x * y ∈ I := +by rewrite mul.comm; apply mul_arb_mem y xI + +lemma eq_univ_of_one_mem_of_is_ideal {I : set A} (H : 1 ∈ I) [is_ideal I] : I = univ := +eq_univ_of_forall (take x, have x * 1 ∈ I, from mul_arb_mem x H, by simp) + +theorem is_ideal_inter ( I J : set A) (HI : is_ideal I) + (HJ : is_ideal J) : is_ideal (I ∩ J) := +have H1 : 0 ∈ I ∩ J, from and.intro zero_mem zero_mem, +have H2 : ∀₀ x ∈ I ∩ J, ∀₀ y ∈ I ∩ J, x + y ∈ I ∩ J, from + take x, assume xIJ, take y, assume yIJ, + obtain xI xJ, from xIJ, + obtain yI yJ, from yIJ, + show x + y ∈ I ∩ J, from and.intro (add_mem xI yI) (add_mem xJ yJ), +have H3 : ∀ x, ∀₀ y ∈ I ∩ J, x * y ∈ I ∩ J, from + take x y, assume yIJ, + obtain yI yJ, from yIJ, + show x * y ∈ I ∩ J, from and.intro (mul_arb_mem x yI)(mul_arb_mem x yJ), +show is_ideal (I ∩ J), from is_ideal.mk H1 H2 H3 + +theorem is_ideal_singleton_zero : is_ideal '{(0 : A)} := +have H1 : 0 ∈ '{0}, from mem_singleton 0, +have H2 : ∀₀ x ∈ '{0}, ∀₀ y ∈ '{0}, x + y ∈ '{0}, from + take x, assume xmem, take y, assume ymem, + by rewrite [eq_of_mem_singleton xmem, eq_of_mem_singleton ymem, zero_add]; apply mem_singleton, +have H3 : ∀x, ∀₀ y ∈ '{0}, x * y ∈ '{0}, from + take x y, assume ymem, + by rewrite [eq_of_mem_singleton ymem, mul_zero]; apply mem_singleton, +is_ideal.mk H1 H2 H3 + +lemma is_ideal_univ : is_ideal (@univ A) := +have H1 : 0 ∈ @univ A, from trivial, +have H2: ∀₀ x ∈ univ, ∀₀ y ∈ univ, x + y ∈ (@univ A), from λ x xmem y ymem, trivial, +have H3 : ∀ x, ∀₀ y ∈ univ, x * y ∈ (@univ A), from λ x y ymem, trivial, +is_ideal.mk H1 H2 H3 + +lemma is_ideal_set_add [instance] (I J : set A) [is_ideal I] [is_ideal J] : is_ideal (I + J) := +have H1 : 0 ∈ I + J, from + mem_set_add zero_mem zero_mem (by simp), +have H2 : ∀₀ x ∈ I + J, ∀₀ y ∈ I + J, x + y ∈ I + J, from + λ x xmem y ymem, + obtain ix [ixI [jx [jxJ xeq]]], from xmem, + obtain iy [iyI [jy [jyJ yeq]]], from ymem, + show x + y ∈ I + J, from + mem_set_add (add_mem ixI iyI) (add_mem jxJ jyJ) + (by rewrite [xeq, yeq, *add.assoc, add.left_comm jx]), +have H3 : ∀ x, ∀₀ y ∈ I + J, x * y ∈ I + J, from + λ x y ymem, + obtain iy [iyI [jy [jyJ yeq]]], from ymem, + show x * y ∈ I + J, from + mem_set_add (mul_arb_mem x iyI) (mul_arb_mem x jyJ) + (by rewrite [yeq, left_distrib]), +is_ideal.mk H1 H2 H3 + +lemma set_add_subset_of_is_ideal {S T I : set A} [is_ideal I] (SsubI : S ⊆ I) (TsubI : T ⊆ I) : + S + T ⊆ I := +take x, suppose x ∈ S + T, +obtain s [sS [t [tT xeq]]], from this, +have s + t ∈ I, from add_mem (SsubI sS) (TsubI tT), +show x ∈ I, by rewrite xeq; apply this + +/- ideal generated by a set -/ + +inductive ideal_generated_by (S : set A) : A → Prop := +| generators_mem : ∀ {x}, x ∈ S → ideal_generated_by S x +| zero_closed : ideal_generated_by S 0 +| add_closed : ∀ {x y}, ideal_generated_by S x → ideal_generated_by S y → + ideal_generated_by S (x + y) +| mul_arb_closed : ∀ r {x}, ideal_generated_by S x → ideal_generated_by S (r * x) + +theorem subset_ideal_generated_by (S : set A) : S ⊆ ideal_generated_by S := +λ x xS, ideal_generated_by.generators_mem xS + +theorem is_ideal_ideal_generated_by [instance] (S : set A) : is_ideal (ideal_generated_by S) := +is_ideal.mk + (ideal_generated_by.zero_closed S) + (λ x xmem y ymem, ideal_generated_by.add_closed xmem ymem) + (λ r x xmem, ideal_generated_by.mul_arb_closed r xmem) + +theorem ideal_generated_by_subset {S : set A} {I : set A} [is_ideal I] (H : S ⊆ I) : + ideal_generated_by S ⊆ I := +begin + intro x xiS, + induction xiS with a ains a b aiS biS aI bI r a aiS aI, + {exact H ains}, + {exact zero_mem}, + {exact add_mem aI bI}, + exact mul_arb_mem r aI +end + +theorem ideal_generated_by_eq {S : set A} {I : set A} [is_ideal I] (SsubI : S ⊆ I) + (H : ∀ J, is_ideal J → S ⊆ J → I ⊆ J) : + ideal_generated_by S = I := +eq_of_subset_of_subset + (ideal_generated_by_subset SsubI) + (H _ _ (subset_ideal_generated_by S)) + +theorem ideal_generated_by_eq_of_is_ideal {S : set A} [is_ideal S] : ideal_generated_by S = S := +ideal_generated_by_eq (subset.refl _) (λ J iJ sJ, sJ) + +definition principal_ideal (a : A) : set A := ideal_generated_by '{a} + +theorem mem_principal_ideal (a : A) : a ∈ principal_ideal a := +subset_ideal_generated_by _ (mem_singleton a) + +theorem is_ideal_principal_ideal [instance] (a : A) : is_ideal (principal_ideal a) := +is_ideal_ideal_generated_by _ + +theorem principal_ideal_eq (a : A) : principal_ideal a = {b | ∃ r, b = r * a} := +have is_ideal {b | ∃ r, b = r * a}, from + is_ideal.mk + (exists.intro 0 (by simp)) + (λ x xmem y ymem, + obtain r xeq, from xmem, obtain s yeq, from ymem, + exists.intro (r + s) (by rewrite [xeq, yeq, right_distrib])) + (λ x y ymem, + obtain r yeq, from ymem, + exists.intro (x * r) (by rewrite [yeq, mul.assoc])), +ideal_generated_by_eq + (singleton_subset_of_mem (exists.intro 1 (by simp))) + (take J, suppose is_ideal J, suppose '{a} ⊆ J, + have a ∈ J, from mem_of_singleton_subset this, + show {b | ∃ r, b = r * a} ⊆ J, from + take b, suppose ∃ r, b = r * a, + obtain r beq, from this, + show b ∈ J, by rewrite beq; exact mul_arb_mem r `a ∈ J`) + +theorem ideal_generated_by_union_eq (S T: set A) : + ideal_generated_by (S ∪ T) = ideal_generated_by S + ideal_generated_by T := +-- TODO: why are these needed? +have is_ideal (ideal_generated_by S + ideal_generated_by T), from is_ideal_set_add _ _, +have is_add_subgroup (ideal_generated_by T), from is_add_subgroup_of_is_ideal _, +have is_zero_closed (ideal_generated_by T), from is_add_subgroup.to_is_zero_closed _, +have is_add_subgroup (ideal_generated_by S), from is_add_subgroup_of_is_ideal _, +have is_zero_closed (ideal_generated_by S), from is_add_subgroup.to_is_zero_closed _, +ideal_generated_by_eq + (union_subset + (subset.trans (subset_ideal_generated_by S) (subset_set_add_right _ _)) + (subset.trans (subset_ideal_generated_by T) (subset_set_add_left _ _))) + (take J, assume idealJ, assume JsubST, + set_add_subset_of_is_ideal + (ideal_generated_by_subset (subset.trans (subset_union_left _ _) JsubST)) + (ideal_generated_by_subset (subset.trans (subset_union_right _ _) JsubST))) + +lemma ideal_generated_by_union_singleton (I : set A) [is_ideal I] (a : A) : + ideal_generated_by (I ∪ '{a}) = {b | ∃₀ y ∈ I, ∃ z, b = y + z * a} := +begin + rewrite [ideal_generated_by_union_eq, ideal_generated_by_eq_of_is_ideal], + xrewrite [principal_ideal_eq], + show I + {b | ∃ r, b = r * a} = {b | ∃ x, x ∈ I ∧ ∃ z, b = x + z * a}, + from set.ext (take y, iff.intro + (assume ymem, + obtain x [xI [b [[r beq] xeq]]], from ymem, + exists.intro x (and.intro xI (exists.intro r (by rewrite [xeq, beq])))) + (assume ymem, + obtain x [xI [z beq]], from ymem, + mem_set_add xI (exists.intro z rfl) beq)) +end + +theorem exists_mul_eq_one_of_two_ideals (H : ∀ I : set A, is_ideal I → I = univ ∨ I = '{0}) + {x : A} (H1 : x ≠ 0) : + ∃ y, x * y = 1 := +or.elim (H (principal_ideal x) _) + (suppose principal_ideal x = univ, + have 1 ∈ principal_ideal x, by rewrite this; apply mem_univ, + have ∃r, 1 = r*x, by rewrite [principal_ideal_eq x at this]; apply this, + obtain r oneeq, from this, + exists.intro r (by rewrite [oneeq, mul.comm])) + (suppose principal_ideal x = '{0}, + have x ∈ '{0}, by rewrite -this; apply mem_principal_ideal x, + have x = 0, from eq_of_mem_singleton this, + absurd this H1) + +theorem principal_ideal_subset {I : set A} [is_ideal I] {a : A} (aI : a ∈ I) : + principal_ideal a ⊆ I := +take x, +suppose x ∈ principal_ideal a, +have ∃ r, x = r * a, by rewrite [principal_ideal_eq at this]; apply this, +obtain r xeq, from this, +show x ∈ I, by rewrite xeq; apply mul_arb_mem r aI + +theorem exists_mem_and_ne_zero_of_is_ideal {I : set A} [is_ideal I] (H : I ≠ '{0}) : + ∃ y, y ∈ I ∧ y ≠ 0 := +have '{0} ⊆ I, from singleton_subset zero_mem, +have ∃y , (y ∈ I ∧ y ∉ '{0}), + from exists_mem_and_not_mem_of_ne_of_subset (ne.symm H) this, +obtain y [yI ynmem], from this, +exists.intro y (and.intro yI (assume yeq, ynmem (mem_singleton_of_eq yeq))) + +theorem eq_univ_of_is_ideal_of_one_mem {I : set A} [is_ideal I] (H : 1 ∈ I) : I = univ := +eq_univ_of_forall (take x, by rewrite -mul_one; apply mul_arb_mem _ H) + +theorem eq_univ_or_eq_singleton_zero_of_is_ideal (H : ∀ x : A , x ≠ 0 → ∃ y, x * y = 1) + {I : set A} [is_ideal I] : I = univ ∨ I = '{0} := +by_cases + (suppose I = '{0}, or.inr this) + (suppose I ≠ '{0}, + obtain x [xI xne0], from exists_mem_and_ne_zero_of_is_ideal this, + obtain y (xyeq : x * y = 1), from H x xne0, + have 1 ∈ I, by rewrite -xyeq; exact mul_arb_mem' xI _, + have I = univ, from eq_univ_of_is_ideal_of_one_mem this, + or.inl this) + +-- TODO: move +private definition inhabited_of_has_zero [instance] : inhabited A := +inhabited.mk 0 + +noncomputable private definition classical_inv (x : A) : A := +if H : x = 0 then 0 else epsilon (λ y, x * y = 1) + +private theorem mul_classical_inv (H : ∀ x : A , x ≠ 0 → ∃ y, x * y = 1) (x : A) (H' : x ≠ 0) : + x * (classical_inv x) = 1 := +by rewrite [↑classical_inv, dif_neg H']; apply epsilon_spec (H x H') + +private theorem classical_inv_mul (H : ∀ x : A , x ≠ 0 → ∃ y, x * y = 1) (x : A) (H' : x ≠ 0) : + (classical_inv x) * x = 1 := +by rewrite [mul.comm, mul_classical_inv H x H'] + +private theorem classical_inv_zero : classical_inv (0 : A) = 0 := +by rewrite [↑classical_inv, dif_pos rfl] + +noncomputable definition discrete_field_of_comm_ring (H : ∀ x : A , x ≠ 0 → ∃ y, x * y = 1) + (H' : 0 ≠ 1) : + discrete_field A := +⦃ discrete_field, (_ : comm_ring A), + inv := classical_inv, + zero_ne_one := H', + inv_mul_cancel := classical_inv_mul H, + mul_inv_cancel := mul_classical_inv H, + has_decidable_eq := _, + inv_zero := classical_inv_zero +⦄ + +end + + +/- quotient ring -/ + +namespace quotient_ring +variables {A : Type} [comm_ring A] (K : set A) [is_ideal K] + +local notation a `~` b := b - a ∈ K + +private lemma rel_rfl (a : A) : a ~ a := by rewrite sub_self; apply zero_mem + +private lemma rel_symm (a b : A) (H : a ~ b) : b ~ a := +mem_of_neg_mem (by rewrite neg_sub; apply H) + +private lemma rel_trans (a b c : A) (H₁ : a ~ b) (H₂ : b ~ c) : a ~ c := +have c - a = (c - b) + (b - a), by simp, +show c - a ∈ K, by rewrite this; exact add_mem H₂ H₁ + +private lemma add_well_defined {a1 a2 b1 b2 : A} (H1 : a1 ~ b1) (H2 : a2 ~ b2) : + a1 + a2 ~ b1 + b2 := +have (b1 + b2) - (a1 + a2) = (b1 - a1) + (b2 - a2), by simp, +by rewrite this; apply add_mem H1 H2 + +private lemma neg_well_defined {a b : A} (H : a ~ b) : (-a ~ -b) := +mem_of_neg_mem (by rewrite [neg_neg_sub_neg]; apply H) + +private lemma mul_well_defined {a1 a2 b1 b2 : A} (H1 : a1 ~ b1) (H2 : a2 ~ b2) : + a1 * a2 ~ b1 * b2 := +have b1 * b2 - a1 * a2 = (b1 - a1) * b2 + a1 * (b2 - a2), + by rewrite [mul_sub_right_distrib, mul_sub_left_distrib, *sub_eq_add_neg, add.assoc, + neg_add_cancel_left], +begin + rewrite this, apply add_mem, + {exact mul_arb_mem' H1 _}, + exact mul_arb_mem _ H2 +end + +definition quotient_ring_setoid : setoid A := +setoid.mk (λ a b, b - a ∈ K) (mk_equivalence _ (rel_rfl K) (rel_symm K) (rel_trans K)) + +local attribute quotient_ring_setoid [instance] + +definition quotient [reducible] : Type := quot (quotient_ring_setoid K) + +definition qproj (a : A) : quotient K := @quot.mk A (quotient_ring_setoid K) a + +infix ` / ` := λ (A' : Type) [comm_ring A'] K' [is_ideal K'], quotient K' +infix ` '+ `:65 := λ {A' : Type} [comm_ring A'] a K' [is_ideal K'], qproj K' a + +variable {K} + +theorem qproj_eq_qproj {a b : A} (H : b - a ∈ K) : a '+ K = b '+ K := +quot.sound H + +theorem sub_mem_of_qproj_eq_qproj {a b : A} (H : a '+ K = b '+ K) : b - a ∈ K := +quot.exact H + +theorem qproj_eq_qproj_iff (a b : A) : a '+ K = b '+ K ↔ b - a ∈ K := +iff.intro sub_mem_of_qproj_eq_qproj qproj_eq_qproj + +-- TODO: replace in group.quotient as well +proposition quotient_induction {P : A / K → Prop} (h : ∀ a, P (a '+ K)) : ∀ a, P a := +take a, quot.induction_on a h + +proposition quotient_induction_on {P : A / K → Prop} (a : A / K) (h : ∀ a, P (a '+ K)) : P a := +quot.induction_on a h + +proposition quotient_induction₂ {P : A / K → A / K → Prop} + (h : ∀ a₁ a₂, P (a₁ '+ K) (a₂ '+ K)) : + ∀ a₁ a₂, P a₁ a₂ := +take a₁ a₂, quot.induction_on₂ a₁ a₂ h + +proposition quotient_induction_on₂ {P : A / K → A / K → Prop} + (a₁ a₂ : A / K) (h : ∀ a₁ a₂, P (a₁ '+ K) (a₂ '+ K)) : + P a₁ a₂ := +quot.induction_on₂ a₁ a₂ h + +proposition exists_eq_qproj : ∀ a : A / K, ∃ a', a = a' '+ K := +quotient_induction (λ a, exists.intro _ rfl) + +private definition qadd : A / K → A / K → A / K := +quot.lift₂ + (λ a b, (a + b) '+ K) + (take a₁ a₂ b₁ b₂, assume Ha : a₁ ~ b₁, assume Hb : a₂ ~ b₂, + quot.sound (add_well_defined K Ha Hb)) + +private definition qmul : A / K → A / K → A / K := +quot.lift₂ + (λ a b, (a * b) '+ K) + (take a₁ a₂ b₁ b₂, assume Ha : a₁ ~ b₁, assume Hb : a₂ ~ b₂, + quot.sound (mul_well_defined K Ha Hb)) + +private definition qzero : A / K := 0 '+ K + +private definition qone : A / K := 1 '+ K + +private lemma qproj_eq_qproj_of_eq {a b : A} (H : a = b) : (a '+ K) = (b '+ K) := by rewrite H + +private theorem qadd_comm (a b : A / K) : qadd a b = qadd b a := +quot.induction_on₂ a b + (take a b, qproj_eq_qproj_of_eq (add.comm a b)) + +private theorem qadd_assoc (a b c : A / K) : qadd (qadd a b) c = qadd a (qadd b c) := +quot.induction_on₃ a b c + (take a b c, qproj_eq_qproj_of_eq (add.assoc a b c)) + +private definition qneg : A / K → A / K := +quot.lift + (λ a , (-a) '+ K) + (take a1 a2, assume Ha : a1 ~ a2, quot.sound (neg_well_defined K Ha)) + +private theorem qadd_left_inverse (a : A/ K) : qadd (qneg a) a = qzero := +quot.induction_on a + (take a, qproj_eq_qproj_of_eq (add.left_inv a)) + +private theorem zero_qadd (a : A / K) : qadd qzero a = a := +quot.induction_on a + (take a, qproj_eq_qproj_of_eq (zero_add a)) + +private theorem qadd_zero (a : A / K) : qadd a qzero = a := +quot.induction_on a + (take a, qproj_eq_qproj_of_eq (add_zero a)) + +private theorem qmul_comm (a b : A / K) : qmul a b = qmul b a := +quot.induction_on₂ a b + (take a b, qproj_eq_qproj_of_eq (mul.comm a b)) + +private theorem qmul_assoc (a b c : A / K) : qmul (qmul a b) c = qmul a (qmul b c) := +quot.induction_on₃ a b c + (take a b c, qproj_eq_qproj_of_eq (mul.assoc a b c)) + +private theorem one_qmul (a : A / K) : qmul qone a = a := +quot.induction_on a + (take a, qproj_eq_qproj_of_eq (one_mul a)) + +private theorem qmul_one (a : A / K) : qmul a qone = a := +quot.induction_on a + (take a, qproj_eq_qproj_of_eq (mul_one a)) + +private theorem left_distrib (a b c : A/K) : qmul a (qadd b c)= qadd (qmul a b) (qmul a c) := +quot.induction_on₃ a b c + (take a b c, qproj_eq_qproj_of_eq (left_distrib a b c)) + +private theorem right_distrib (a b c : A/K) : qmul (qadd a b) c = qadd (qmul a c) (qmul b c) := +quot.induction_on₃ a b c + (take a b c, qproj_eq_qproj_of_eq (right_distrib a b c)) + +private theorem qadd_comm (a b : A / K) : qadd a b = qadd b a := +quot.induction_on b + (quot.induction_on a + (take a b, + have (b + a) - (a + b) = 0, by simp, + have (b + a) - (a + b) ∈ K, by rewrite this; exact zero_mem, + quot.sound this)) + +protected definition to_ring [instance] : comm_ring (quotient K) := +⦃ comm_ring, + add := qadd, + add_assoc := qadd_assoc, + zero := qzero, + zero_add := zero_qadd, + add_zero := qadd_zero, + neg := qneg, + add_left_inv := qadd_left_inverse, + add_comm := qadd_comm, + mul := qmul, + mul_assoc := qmul_assoc, + one := qone, + one_mul := one_qmul, + mul_one := qmul_one, + left_distrib := left_distrib, + right_distrib := right_distrib, + mul_comm := qmul_comm +⦄ + +variable (K) +theorem qproj_zero : 0 '+ K = 0 := rfl +theorem qproj_one : 1 '+ K = 1 := rfl +variable {K} + +theorem qproj_eq_zero_iff (a : A) : a '+ K = 0 ↔ a ∈ K := +by krewrite [qproj_eq_qproj_iff, sub_mem_iff, sub_zero] + +theorem mem_of_qproj_eq_zero {a : A} (H : a '+ K = 0 '+ K) : a ∈ K := +iff.mp (qproj_eq_zero_iff a) H + +theorem qproj_eq_zero {a : A} (H : a ∈ K) : a '+ K = 0 := +iff.mpr (qproj_eq_zero_iff a) H + +end quotient_ring + +/- prime and maximal ideals -/ + +section +variables {A : Type} [comm_ring A] +open quotient_ring + +structure is_prime_ideal [class] (I : set A) extends is_ideal I : Prop := +(is_prime : ∀ ⦃a b⦄, a * b ∈ I → a ∈ I ∨ b ∈ I) +(nontrivial : I ≠ univ) + +structure is_maximal_ideal [class] (I : set A) extends is_ideal I : Prop := +(is_maximal : ∀ ⦃J : set A⦄, is_ideal J → J ⊇ I → J = I ∨ J = univ) +(nontrivial : I ≠ univ) + +theorem mem_or_mem_of_is_prime {I : set A} [is_prime_ideal I] {a b : A} (H : a * b ∈ I) : + a ∈ I ∨ b ∈ I := +is_prime_ideal.is_prime H + +theorem ne_univ_of_is_prime (I : set A) [is_prime_ideal I] : I ≠ univ := +@is_prime_ideal.nontrivial _ _ I _ + +theorem is_maximal {I : set A} [is_maximal_ideal I] {J : set A} [idealJ : is_ideal J] (H : J ⊇ I) : + J = I ∨ J = univ := +is_maximal_ideal.is_maximal idealJ H + +theorem qproj_eq_zero_or_qproj_eq_zero_of_is_prime_ideal {I : set A} [is_prime_ideal I] (a b : A) + (H : (a '+ I) * (b '+ I) = 0) : + a '+ I = 0 ∨ b '+ I = 0 := +begin + rewrite [+qproj_eq_zero_iff], + apply mem_or_mem_of_is_prime, + apply mem_of_qproj_eq_zero, + exact H +end + +theorem is_prime_ideal_of_forall {I : set A} [is_ideal I] + (H : ∀ a b, (a '+ I) * (b '+ I) = 0 → a '+ I = 0 ∨ b '+ I = 0) (H' : I ≠ univ) : + is_prime_ideal I := +⦃ is_prime_ideal, (_ : is_ideal I), + is_prime := begin + intro a b abI, + rewrite [-+qproj_eq_zero_iff], + apply H, + exact qproj_eq_zero abI + end, + nontrivial := H' +⦄ + +theorem exists_qproj_mul_qproj_eq_one_of_is_maximal {I : set A} [is_maximal_ideal I] {a : A} + (H : a '+ I ≠ 0) : + ∃ y, (a '+ I) * (y '+ I) = 1 := +have ideal_generated_by (I ∪ '{a}) ≠ I, from + assume otherwise, + have a ∈ ideal_generated_by (I ∪ '{a}), + from subset_ideal_generated_by _ (mem_unionr (mem_singleton _)), + have a ∉ I, from λ H', H (qproj_eq_zero H'), + show false, begin apply this, rewrite -otherwise, assumption end, +have ideal_generated_by (I ∪ '{a}) = univ, from + or.resolve_left + (is_maximal (subset.trans (subset_union_left _ _) (subset_ideal_generated_by _))) this, +have 1 ∈ {b | ∃₀ y ∈ I, ∃ z, b = y + z * a}, + by rewrite [-ideal_generated_by_union_singleton, this]; apply mem_univ, +obtain y [yI [z (oneeq : 1 = y + z * a)]], from this, +exists.intro z (qproj_eq_qproj + (show 1 - a * z ∈ I, by rewrite [oneeq, mul.comm, add_sub_cancel]; exact yI)) + +theorem is_maximal_ideal_of_forall {I : set A} [is_ideal I] + (H : ∀ a, a '+ I ≠ 0 → ∃ y, (a '+ I) * (y '+ I) = 1) (H' : I ≠ univ) : + is_maximal_ideal I := +⦃ is_maximal_ideal, (_ : is_ideal I), + is_maximal := take J, suppose is_ideal J, suppose J ⊇ I, + by_cases + (suppose J = I, or.inl this) + (suppose J ≠ I, + obtain a [aJ anI], + from exists_mem_and_not_mem_of_ne_of_subset (ne.symm this) `J ⊇ I`, + have a '+ I ≠ 0, from λ H', anI (mem_of_qproj_eq_zero H'), + obtain y (Hy : (a '+ I) * (y '+ I) = 1), from H _ this, + have 1 - a * y ∈ I, from sub_mem_of_qproj_eq_qproj Hy, + have 1 - a * y + a * y ∈ J, from add_mem (`J ⊇ I` this) (mul_arb_mem' aJ _), + have 1 ∈ J, by rewrite [sub_add_cancel at this]; exact this, + show J = I ∨ J = univ, from or.inr (eq_univ_of_is_ideal_of_one_mem this)), + nontrivial := H' +⦄ + +definition integral_domain_quotient_of_is_prime_ideal [instance] (I : set A) [is_prime_ideal I] : + integral_domain (A / I) := +have H : ∀ a b : A / I, a * b = 0 → a = 0 ∨ b = 0, from + quotient_induction₂ qproj_eq_zero_or_qproj_eq_zero_of_is_prime_ideal, +have H' : (0 : A / I) ≠ 1, from + assume otherwise, + have 1 - 0 ∈ I, from sub_mem_of_qproj_eq_qproj otherwise, + have I = univ, from eq_univ_of_is_ideal_of_one_mem (by rewrite [sub_zero at this]; exact this), + show false, from is_prime_ideal.nontrivial _ I this, +⦃ integral_domain, (_ : comm_ring (A / I)), + eq_zero_or_eq_zero_of_mul_eq_zero := H, + zero_ne_one := H' +⦄ + +theorem is_prime_ideal_of_forall_quotient {I : set A} [is_ideal I] + (H : ∀ a b : A / I, a * b = 0 → a = 0 ∨ b = 0) (H' : I ≠ univ) : + is_prime_ideal I := +is_prime_ideal_of_forall (λ a b, H _ _) H' + +noncomputable definition discrete_field_quotient_of_is_maximal_ideal [instance] + (I : set A) [is_maximal_ideal I] : + discrete_field (A / I) := +have H : ∀ x : A / I, x ≠ 0 → ∃ y, x * y = 1, from + quotient_induction + (take a, assume anz, + obtain y Hy, from exists_qproj_mul_qproj_eq_one_of_is_maximal anz, + exists.intro (y '+ I) Hy), +have H' : (0 : A / I) ≠ 1, from + assume otherwise, + have 1 - 0 ∈ I, from sub_mem_of_qproj_eq_qproj otherwise, + have I = univ, from eq_univ_of_is_ideal_of_one_mem (by rewrite [sub_zero at this]; exact this), + show false, from is_maximal_ideal.nontrivial _ I this, +discrete_field_of_comm_ring H H' + +theorem is_maximal_ideal_of_forall_quotient {I : set A} [is_ideal I] + (H : ∀ a : A / I, a ≠ 0 → ∃ b, a * b = 1) (H' : I ≠ univ) : + is_maximal_ideal I := +is_maximal_ideal_of_forall + (λ a aIne0, + obtain b Hb, from H _ aIne0, + obtain b' (beq : b = b' '+ I), from exists_eq_qproj b, + exists.intro b' (by rewrite -beq; exact Hb)) + H' + +theorem is_prime_ideal_of_is_maximal_ideal [instance] {I : set A} [is_maximal_ideal I] : + is_prime_ideal I := +is_prime_ideal_of_forall_quotient + (@eq_zero_or_eq_zero_of_mul_eq_zero _ _) + (is_maximal_ideal.nontrivial _ I) + +end diff --git a/library/theories/theories.md b/library/theories/theories.md index 2b54a8bcd..cb783cd18 100644 --- a/library/theories/theories.md +++ b/library/theories/theories.md @@ -5,6 +5,7 @@ theories * [combinatorics](combinatorics/combinatorics.md) * [group_theory](group_theory/group_theory.md) * [finite_group_theory](finite_group_theory/finite_group_theory.md) : group theory based on finsets +* [commutative_algebra](commutative_algebra/commutative_algebra.md) * [topology](topology/topology.md) * [analysis](analysis/analysis.md) * [measure_theory](measure_theory/measure_theory.md) \ No newline at end of file