feat(builtin/Nat): leq axiom, and some theorems
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
502d9f47ac
commit
2d5800ace4
2 changed files with 51 additions and 0 deletions
|
@ -1,4 +1,5 @@
|
||||||
Import kernel.
|
Import kernel.
|
||||||
|
Import macros.
|
||||||
|
|
||||||
Variable Nat : Type.
|
Variable Nat : Type.
|
||||||
Alias ℕ : Nat.
|
Alias ℕ : Nat.
|
||||||
|
@ -34,6 +35,7 @@ Axiom PlusZero (a : Nat) : a + 0 = a.
|
||||||
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
|
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
|
||||||
Axiom MulZero (a : Nat) : a * 0 = 0.
|
Axiom MulZero (a : Nat) : a * 0 = 0.
|
||||||
Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a.
|
Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a.
|
||||||
|
Axiom LeDef (a b : Nat) : a ≤ b ⇔ ∃ c : Nat, a + c = b.
|
||||||
Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
|
Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
|
||||||
|
|
||||||
Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
|
Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
|
||||||
|
@ -154,6 +156,55 @@ Theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c
|
||||||
... = (n + 1) * b * c : { Symm (SuccMul n b) })
|
... = (n + 1) * b * c : { Symm (SuccMul n b) })
|
||||||
a.
|
a.
|
||||||
|
|
||||||
|
Theorem PlusInj' (a b c : Nat) : a + b = a + c ⇒ b = c
|
||||||
|
:= Induction (assume H : 0 + b = 0 + c,
|
||||||
|
calc b = 0 + b : Symm (ZeroPlus b)
|
||||||
|
... = 0 + c : H
|
||||||
|
... = c : ZeroPlus c)
|
||||||
|
(λ (n : Nat) (iH : n + b = n + c ⇒ b = c),
|
||||||
|
assume H : n + 1 + b = n + 1 + c,
|
||||||
|
let L1 : n + b + 1 = n + c + 1
|
||||||
|
:= (calc n + b + 1 = n + (b + 1) : Symm (PlusAssoc n b 1)
|
||||||
|
... = n + (1 + b) : { PlusComm b 1 }
|
||||||
|
... = n + 1 + b : PlusAssoc n 1 b
|
||||||
|
... = n + 1 + c : H
|
||||||
|
... = n + (1 + c) : Symm (PlusAssoc n 1 c)
|
||||||
|
... = n + (c + 1) : { PlusComm 1 c }
|
||||||
|
... = n + c + 1 : PlusAssoc n c 1),
|
||||||
|
L2 : n + b = n + c := SuccInj L1
|
||||||
|
in MP iH L2)
|
||||||
|
a.
|
||||||
|
|
||||||
|
Theorem PlusInj {a b c : Nat} (H : a + b = a + c) : b = c
|
||||||
|
:= MP (PlusInj' a b c) H.
|
||||||
|
|
||||||
|
Theorem LeIntro {a b c : Nat} (H : a + c = b) : a ≤ b
|
||||||
|
:= EqMP (Symm (LeDef a b)) (show (∃ x, a + x = b), ExistsIntro c H).
|
||||||
|
|
||||||
|
Theorem LeElim {a b : Nat} (H : a ≤ b) : ∃ x, a + x = b
|
||||||
|
:= EqMP (LeDef a b) H.
|
||||||
|
|
||||||
|
Theorem LeRefl (a : Nat) : a ≤ a := LeIntro (PlusZero a).
|
||||||
|
|
||||||
|
Theorem LeZero (a : Nat) : 0 ≤ a := LeIntro (ZeroPlus a).
|
||||||
|
|
||||||
|
Theorem LeTrans {a b c : Nat} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c
|
||||||
|
:= ExistsElim (LeElim H1)
|
||||||
|
(λ (w1 : Nat) (Hw1 : a + w1 = b),
|
||||||
|
ExistsElim (LeElim H2)
|
||||||
|
(λ (w2 : Nat) (Hw2 : b + w2 = c),
|
||||||
|
LeIntro (calc a + (w1 + w2) = a + w1 + w2 : PlusAssoc a w1 w2
|
||||||
|
... = b + w2 : { Hw1 }
|
||||||
|
... = c : Hw2))).
|
||||||
|
|
||||||
|
Theorem LeInj {a b : Nat} (H : a ≤ b) (c : Nat) : a + c ≤ b + c
|
||||||
|
:= ExistsElim (LeElim H)
|
||||||
|
(λ (w : Nat) (Hw : a + w = b),
|
||||||
|
LeIntro (calc a + c + w = a + (c + w) : Symm (PlusAssoc a c w)
|
||||||
|
... = a + (w + c) : { PlusComm c w }
|
||||||
|
... = a + w + c : PlusAssoc a w c
|
||||||
|
... = b + c : { Hw })).
|
||||||
|
|
||||||
SetOpaque ge true.
|
SetOpaque ge true.
|
||||||
SetOpaque lt true.
|
SetOpaque lt true.
|
||||||
SetOpaque gt true.
|
SetOpaque gt true.
|
||||||
|
|
Binary file not shown.
Loading…
Reference in a new issue