feat(builtin/Nat): leq axiom, and some theorems

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-02 18:24:32 -08:00
parent 502d9f47ac
commit 2d5800ace4
2 changed files with 51 additions and 0 deletions

View file

@ -1,4 +1,5 @@
Import kernel. Import kernel.
Import macros.
Variable Nat : Type. Variable Nat : Type.
Alias : Nat. Alias : Nat.
@ -34,6 +35,7 @@ Axiom PlusZero (a : Nat) : a + 0 = a.
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1. Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
Axiom MulZero (a : Nat) : a * 0 = 0. Axiom MulZero (a : Nat) : a * 0 = 0.
Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a. Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a.
Axiom LeDef (a b : Nat) : a ≤ b ⇔ ∃ c : Nat, a + c = b.
Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a. Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
Theorem ZeroNeOne : 0 ≠ 1 := Trivial. Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
@ -154,6 +156,55 @@ Theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c
... = (n + 1) * b * c : { Symm (SuccMul n b) }) ... = (n + 1) * b * c : { Symm (SuccMul n b) })
a. a.
Theorem PlusInj' (a b c : Nat) : a + b = a + c ⇒ b = c
:= Induction (assume H : 0 + b = 0 + c,
calc b = 0 + b : Symm (ZeroPlus b)
... = 0 + c : H
... = c : ZeroPlus c)
(λ (n : Nat) (iH : n + b = n + c ⇒ b = c),
assume H : n + 1 + b = n + 1 + c,
let L1 : n + b + 1 = n + c + 1
:= (calc n + b + 1 = n + (b + 1) : Symm (PlusAssoc n b 1)
... = n + (1 + b) : { PlusComm b 1 }
... = n + 1 + b : PlusAssoc n 1 b
... = n + 1 + c : H
... = n + (1 + c) : Symm (PlusAssoc n 1 c)
... = n + (c + 1) : { PlusComm 1 c }
... = n + c + 1 : PlusAssoc n c 1),
L2 : n + b = n + c := SuccInj L1
in MP iH L2)
a.
Theorem PlusInj {a b c : Nat} (H : a + b = a + c) : b = c
:= MP (PlusInj' a b c) H.
Theorem LeIntro {a b c : Nat} (H : a + c = b) : a ≤ b
:= EqMP (Symm (LeDef a b)) (show (∃ x, a + x = b), ExistsIntro c H).
Theorem LeElim {a b : Nat} (H : a ≤ b) : ∃ x, a + x = b
:= EqMP (LeDef a b) H.
Theorem LeRefl (a : Nat) : a ≤ a := LeIntro (PlusZero a).
Theorem LeZero (a : Nat) : 0 ≤ a := LeIntro (ZeroPlus a).
Theorem LeTrans {a b c : Nat} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c
:= ExistsElim (LeElim H1)
(λ (w1 : Nat) (Hw1 : a + w1 = b),
ExistsElim (LeElim H2)
(λ (w2 : Nat) (Hw2 : b + w2 = c),
LeIntro (calc a + (w1 + w2) = a + w1 + w2 : PlusAssoc a w1 w2
... = b + w2 : { Hw1 }
... = c : Hw2))).
Theorem LeInj {a b : Nat} (H : a ≤ b) (c : Nat) : a + c ≤ b + c
:= ExistsElim (LeElim H)
(λ (w : Nat) (Hw : a + w = b),
LeIntro (calc a + c + w = a + (c + w) : Symm (PlusAssoc a c w)
... = a + (w + c) : { PlusComm c w }
... = a + w + c : PlusAssoc a w c
... = b + c : { Hw })).
SetOpaque ge true. SetOpaque ge true.
SetOpaque lt true. SetOpaque lt true.
SetOpaque gt true. SetOpaque gt true.

Binary file not shown.