feat(library/standard): add sigma types and subtypes, make inhabited constructive

This commit is contained in:
Jeremy Avigad 2014-08-14 20:12:54 -07:00 committed by Leonardo de Moura
parent a1645c5ce5
commit 2d69303344
12 changed files with 251 additions and 86 deletions

View file

@ -15,7 +15,10 @@ Basic types:
Constructors:
* [prod](prod.lean) : cartesian product
* [sum](sum.lean)
* [sigma](sigma.lean) : the dependent product
* [option](option.lean)
* [pair](pair.lean)
* [subtype](subtype.lean)
* [list](list/list.md)
* [set](set.lean)

View file

@ -1,45 +0,0 @@
----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
----------------------------------------------------------------------------------------------------
import logic.classes.inhabited logic.connectives.eq
namespace pair
inductive pair (A B : Type) : Type :=
| mk_pair : A → B → pair A B
section thms
parameters {A B : Type}
definition fst [inline] (p : pair A B) := pair_rec (λ x y, x) p
definition snd [inline] (p : pair A B) := pair_rec (λ x y, y) p
theorem pair_inhabited (H1 : inhabited A) (H2 : inhabited B) : inhabited (pair A B) :=
inhabited_elim H1 (λ a, inhabited_elim H2 (λ b, inhabited_intro (mk_pair a b)))
theorem fst_mk_pair (a : A) (b : B) : fst (mk_pair a b) = a :=
refl a
theorem snd_mk_pair (a : A) (b : B) : snd (mk_pair a b) = b :=
refl b
theorem pair_ext (p : pair A B) : mk_pair (fst p) (snd p) = p :=
pair_rec (λ x y, refl (mk_pair x y)) p
theorem pair_ext_eq {p1 p2 : pair A B} (H1 : fst p1 = fst p2) (H2 : snd p1 = snd p2) : p1 = p2 :=
calc p1 = mk_pair (fst p1) (snd p1) : symm (pair_ext p1)
... = mk_pair (fst p2) (snd p1) : {H1}
... = mk_pair (fst p2) (snd p2) : {H2}
... = p2 : pair_ext p2
end thms
instance pair_inhabited
precedence `×`:30
infixr × := pair
-- notation for n-ary tuples
notation `(` h `,` t:(foldl `,` (e r, mk_pair r e) h) `)` := t
end pair

View file

@ -0,0 +1,48 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic.classes.inhabited logic.connectives.eq
inductive prod (A B : Type) : Type :=
| pair : A → B → prod A B
precedence `×`:30
infixr × := prod
-- notation for n-ary tuples
notation `(` h `,` t:(foldl `,` (e r, pair r e) h) `)` := t
namespace prod
section
parameters {A B : Type}
abbreviation pr1 (p : prod A B) := prod_rec (λ x y, x) p
abbreviation pr2 (p : prod A B) := prod_rec (λ x y, y) p
theorem pr1_pair (a : A) (b : B) : pr1 (a, b) = a := refl a
theorem pr2_pair (a : A) (b : B) : pr2 (a, b) = b := refl b
-- TODO: remove prefix when we can protect it
theorem pair_destruct {P : A × B → Prop} (p : A × B) (H : ∀a b, P (a, b)) : P p :=
prod_rec H p
theorem prod_ext (p : prod A B) : pair (pr1 p) (pr2 p) = p :=
pair_destruct p (λx y, refl (x, y))
theorem pair_eq {p1 p2 : prod A B} (H1 : pr1 p1 = pr1 p2) (H2 : pr2 p1 = pr2 p2) : p1 = p2 :=
calc p1 = pair (pr1 p1) (pr2 p1) : symm (prod_ext p1)
... = pair (pr1 p2) (pr2 p1) : {H1}
... = pair (pr1 p2) (pr2 p2) : {H2}
... = p2 : prod_ext p2
theorem prod_inhabited (H1 : inhabited A) (H2 : inhabited B) : inhabited (prod A B) :=
inhabited_elim H1 (λa, inhabited_elim H2 (λb, inhabited_intro (pair a b)))
end
instance prod_inhabited
end prod

View file

@ -0,0 +1,57 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura, Jeremy Avigad
import logic.classes.inhabited logic.connectives.eq
inductive sigma {A : Type} (B : A → Type) : Type :=
| dpair : Πx : A, B x → sigma B
notation `Σ` binders `,` r:(scoped P, sigma P) := r
namespace sigma
section
parameters {A : Type} {B : A → Type}
abbreviation dpr1 (p : Σ x, B x) : A := sigma_rec (λ a b, a) p
abbreviation dpr2 {A : Type} {B : A → Type} (p : Σ x, B x) : B (dpr1 p) := sigma_rec (λ a b, b) p
theorem dpr1_dpair (a : A) (b : B a) : dpr1 (dpair a b) = a := refl a
theorem dpr2_dpair (a : A) (b : B a) : dpr2 (dpair a b) = b := refl b
-- TODO: remove prefix when we can protect it
theorem sigma_destruct {P : sigma B → Prop} (p : sigma B) (H : ∀a b, P (dpair a b)) : P p :=
sigma_rec H p
theorem dpair_ext (p : sigma B) : dpair (dpr1 p) (dpr2 p) = p :=
sigma_destruct p (take a b, refl _)
-- Note that we give the general statment explicitly, to help the unifier
theorem dpair_eq {a1 a2 : A} {b1 : B a1} {b2 : B a2} (H1 : a1 = a2) (H2 : eq_rec_on H1 b1 = b2) :
dpair a1 b1 = dpair a2 b2 :=
(show ∀(b2 : B a2) (H1 : a1 = a2) (H2 : eq_rec_on H1 b1 = b2), dpair a1 b1 = dpair a2 b2, from
eq_rec
(take (b2' : B a1),
assume (H1' : a1 = a1),
assume (H2' : eq_rec_on H1' b1 = b2'),
show dpair a1 b1 = dpair a1 b2', from
calc
dpair a1 b1 = dpair a1 (eq_rec_on H1' b1) : {symm (eq_rec_on_irrel H1' b1)}
... = dpair a1 b2' : {H2'}) H1)
b2 H1 H2
theorem sigma_eq {p1 p2 : Σx : A, B x} :
∀(H1 : dpr1 p1 = dpr1 p2) (H2 : eq_rec_on H1 (dpr2 p1) = (dpr2 p2)), p1 = p2 :=
sigma_destruct p1 (take a1 b1, sigma_destruct p2 (take a2 b2 H1 H2, dpair_eq H1 H2))
theorem sigma_inhabited (H1 : inhabited A) (H2 : inhabited (B (default A))) :
inhabited (sigma B) :=
inhabited_elim H1 (λa, inhabited_elim H2 (λb, inhabited_intro (dpair (default A) b)))
end
instance sigma_inhabited
end sigma

View file

@ -0,0 +1,45 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura, Jeremy Avigad
import logic.classes.inhabited logic.connectives.eq
inductive subtype {A : Type} (P : A → Prop) : Type :=
| tag : Πx : A, P x → subtype P
notation `{` binders `|` r:(scoped P, subtype P) `}` := r
namespace subtype
section
parameter {A : Type}
parameter {P : A → Prop}
-- TODO: make this a coercion?
definition elt_of (a : {x | P x}) : A := subtype_rec (λ x y, x) a
theorem has_property (a : {x | P x}) : P (elt_of a) := subtype_rec (λ x y, y) a
theorem elt_of_tag (a : A) (H : P a) : elt_of (tag a H) = a := refl a
theorem subtype_destruct {Q : {x | P x} → Prop} (a : {x | P x})
(H : ∀(x : A) (H1 : P x), Q (tag x H1)) : Q a :=
subtype_rec H a
theorem tag_irrelevant {a : A} (H1 H2 : P a) : tag a H1 = tag a H2 := refl (tag a H1)
theorem tag_ext (a : subtype P) : Π(H : P (elt_of a)), tag (elt_of a) H = a :=
subtype_destruct a (take (x : A) (H1 : P x) (H2 : P x), refl _)
theorem tag_eq {a1 a2 : A} {H1 : P a1} {H2 : P a2} (H3 : a1 = a2) : tag a1 H1 = tag a2 H2 :=
(show ∀(H2 : P a2), tag a1 H1 = tag a2 H2, from subst H3 (take H2, tag_irrelevant H1 H2)) H2
theorem subtype_eq {a1 a2 : {x | P x}} : ∀(H : elt_of a1 = elt_of a2), a1 = a2 :=
subtype_destruct a1 (take x1 H1, subtype_destruct a2 (take x2 H2 H, tag_eq H))
-- TODO: need inhabited
end
end subtype
-- instance subtype_inhabited

View file

@ -1,8 +1,6 @@
----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
----------------------------------------------------------------------------------------------------
import logic.axioms.hilbert logic.axioms.funext
using eq_proofs
@ -20,10 +18,15 @@ definition u [private] := epsilon (λ x, x = true p)
definition v [private] := epsilon (λx, x = false p)
lemma u_def [private] : u = true p :=
epsilon_ax (exists_intro true (or_inl (refl true)))
sorry
-- previous proof:
-- epsilon_spec (exists_intro true (or_inl (refl true))
-- fully elaborated:
-- @epsilon_spec Prop (λx : Prop, x = true p) (exists_intro true (or_inl (refl true)))
lemma v_def [private] : v = false p :=
epsilon_ax (exists_intro false (or_inl (refl false)))
sorry
-- epsilon_spec (exists_intro false (or_inl (refl false))
lemma uv_implies_p [private] : ¬(u = v) p :=
or_elim u_def

View file

@ -1,23 +1,65 @@
----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
----------------------------------------------------------------------------------------------------
-- Authors: Leonardo de Moura, Jeremy Avigad
import logic.classes.inhabited logic.connectives.eq logic.connectives.quantifiers
import data.subtype data.sum
variable epsilon {A : Type} {H : inhabited A} (P : A → Prop) : A
axiom epsilon_ax {A : Type} {P : A → Prop} (Hex : ∃ a, P a) : P (@epsilon A (inhabited_exists Hex) P)
using subtype
-- logic.axioms.hilbert
-- ====================
-- Follows Coq.Logic.ClassicalEpsilon (but our definition of "inhabited" is the
-- constructive one).
axiom strong_indefinite_description {A : Type} (P : A → Prop) (H : nonempty A) :
{x : A | (∃x : A, P x) → P x}
-- In the presence of classical logic, we could prove this from the weaker
-- axiom indefinite_description {A : Type} {P : A->Prop} (H : ∃x, P x) : { x : A | P x }
theorem nonempty_imp_inhabited {A : Type} (H : nonempty A) : inhabited A :=
let u : {x : A | nonempty A → true} := strong_indefinite_description (λa, true) H in
inhabited_intro (elt_of u)
theorem inhabited_exists {A : Type} {P : A → Prop} (H : ∃x, P x) : inhabited A :=
nonempty_imp_inhabited (obtain w Hw, from H, exists_intro w trivial)
-- the Hilbert epsilon function
-- ----------------------------
definition epsilon {A : Type} {H : inhabited A} (P : A → Prop) : A :=
let u : {x : A | (∃y, P y) → P x} :=
strong_indefinite_description P (inhabited_imp_nonempty H) in
elt_of u
theorem epsilon_spec_aux {A : Type} (H : inhabited A) (P : A → Prop) (Hex : ∃y, P y) :
P (@epsilon A H P) :=
let u : {x : A | (∃y, P y) → P x} :=
strong_indefinite_description P (inhabited_imp_nonempty H) in
has_property u Hex
theorem epsilon_spec {A : Type} {P : A → Prop} (Hex : ∃y, P y) :
P (@epsilon A (inhabited_exists Hex) P) :=
epsilon_spec_aux (inhabited_exists Hex) P Hex
theorem epsilon_singleton {A : Type} (a : A) : @epsilon A (inhabited_intro a) (λ x, x = a) = a :=
epsilon_ax (exists_intro a (refl a))
epsilon_spec (exists_intro a (refl a))
theorem axiom_of_choice {A : Type} {B : A → Type} {R : Π x, B x → Prop} (H : ∀ x, ∃ y, R x y) : ∃ f, ∀ x, R x (f x) :=
-- the axiom of choice
-- -------------------
theorem axiom_of_choice {A : Type} {B : A → Type} {R : Πx, B x → Prop} (H : ∀x, ∃y, R x y) :
∃f, ∀x, R x (f x) :=
let f [inline] := λx, @epsilon _ (inhabited_exists (H x)) (λy, R x y),
H [inline] := take x, epsilon_ax (H x)
H [inline] := take x, epsilon_spec (H x)
in exists_intro f H
theorem skolem {A : Type} {B : A → Type} {P : Π x, B x → Prop} : (∀ x, ∃ y, P x y) ↔ ∃ f, (∀ x, P x (f x)) :=
theorem skolem {A : Type} {B : A → Type} {P : Πx, B x → Prop} :
(∀x, ∃y, P x y) ↔ ∃f, (∀x, P x (f x)) :=
iff_intro
(assume H : (∀x, ∃y, P x y), axiom_of_choice H)
(assume H : (∃f, (∀x, P x (f x))),

View file

@ -11,9 +11,10 @@ using decidable
-- First, we show that (decidable a) is inhabited for any 'a' using the excluded middle
theorem inhabited_decidable [instance] (a : Prop) : inhabited (decidable a) :=
or_elim (em a)
(assume Ha, inhabited_intro (inl Ha))
(assume Hna, inhabited_intro (inr Hna))
nonempty_imp_inhabited
(or_elim (em a)
(assume Ha, nonempty_intro (inl Ha))
(assume Hna, nonempty_intro (inr Hna)))
-- Note that inhabited_decidable is marked as an instance, and it is silently used
-- for synthesizing the implicit argument in the following 'epsilon'

View file

@ -1,19 +1,19 @@
----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Leonardo de Moura, Jeremy Avigad
----------------------------------------------------------------------------------------------------
import logic.connectives.basic
inductive inhabited (A : Type) : Prop :=
inductive inhabited (A : Type) : Type :=
| inhabited_intro : A → inhabited A
theorem inhabited_elim {A : Type} {B : Prop} (H1 : inhabited A) (H2 : A → B) : B :=
definition inhabited_elim {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
inhabited_rec H2 H1
theorem inhabited_Prop [instance] : inhabited Prop :=
definition inhabited_Prop [instance] : inhabited Prop :=
inhabited_intro true
theorem inhabited_fun [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) :=
definition inhabited_fun [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) :=
inhabited_elim H (take b, inhabited_intro (λa, b))
definition default (A : Type) {H : inhabited A} : A := inhabited_elim H (take a, a)

View file

@ -14,6 +14,8 @@ inductive eq {A : Type} (a : A) : A → Prop :=
infix `=`:50 := eq
theorem eq_irrel {A : Type} {a : A} (H1 : a = a) : H1 = (refl a) := refl _
theorem subst {A : Type} {a b : A} {P : A → Prop} (H1 : a = b) (H2 : P a) : P b :=
eq_rec H2 H1
@ -24,12 +26,22 @@ calc_subst subst
calc_refl refl
calc_trans trans
theorem symm {A : Type} {a b : A} (H : a = b) : b = a :=
subst H (refl a)
theorem true_ne_false : ¬true = false :=
assume H : true = false,
subst H trivial
theorem symm {A : Type} {a b : A} (H : a = b) : b = a :=
subst H (refl a)
-- eq_rec with arguments swapped, for transporting an element of a dependent type
definition eq_rec_on {A : Type} {a1 a2 : A} {B : A → Type} (H1 : a1 = a2) (H2 : B a1) : B a2 :=
eq_rec H2 H1
theorem eq_rec_on_irrel {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : eq_rec_on H b = b :=
@trans _ _ (eq_rec_on (refl a) b) _ (refl _) (refl _)
theorem eq_rec_irrel {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : eq_rec b H = b :=
eq_rec_on_irrel H b
namespace eq_proofs
postfix `⁻¹`:100 := symm

View file

@ -38,9 +38,6 @@ theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop}
obtain w Hw, from H2,
H1 w (and_elim_left Hw) (and_elim_right Hw)
theorem inhabited_exists {A : Type} {p : A → Prop} (H : ∃x, p x) : inhabited A :=
obtain w Hw, from H, inhabited_intro w
theorem forall_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∀x, φ x) ↔ (∀x, ψ x) :=
iff_intro
(assume Hl, take x, iff_elim_left (H x) (Hl x))
@ -81,7 +78,9 @@ iff_intro
(assume H2, obtain (w : A) (Hw : ψ w), from H2,
exists_intro w (or_inr Hw)))
theorem forall_not_inhabited {A : Type} {B : A → Prop} (H : ¬ inhabited A) : ∀x, B x :=
take x,
have Hi : inhabited A, from inhabited_intro x,
absurd_elim (B x) Hi H
abbreviation nonempty (A : Type) := ∃x : A, true
theorem nonempty_intro {A : Type} (x : A) : nonempty A := exists_intro x trivial
theorem inhabited_imp_nonempty {A : Type} (H : inhabited A) : nonempty A :=
exists_intro (default A) trivial

View file

@ -2,4 +2,4 @@
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic tools.tactic data.num data.string data.pair logic.connectives.cast
import logic tools.tactic data.num data.string data.prod logic.connectives.cast