feat(library/blast/congruence_closure): implement congruence closure

Proof extraction is still missing
This commit is contained in:
Leonardo de Moura 2015-11-19 19:37:11 -08:00
parent 968b615390
commit 2d93fe4b76
7 changed files with 343 additions and 30 deletions

View file

@ -17,7 +17,8 @@ struct cc_branch_extension : public branch_extension {
cc_branch_extension() {}
cc_branch_extension(cc_branch_extension const & o):m_cc(o.m_cc) {}
virtual ~cc_branch_extension() {}
virtual branch_extension * clone() { return new cc_branch_extension(*this); }
virtual branch_extension * clone() override { return new cc_branch_extension(*this); }
virtual void initialized() override { m_cc.initialize(); }
};
void initialize_assert_cc_action() {
@ -33,6 +34,9 @@ static congruence_closure & get_cc() {
action_result assert_cc_action(hypothesis_idx hidx) {
congruence_closure & cc = get_cc();
cc.add(hidx);
// TODO(Leo): remove the following line
return action_result::new_branch();
cc.display();
if (cc.is_inconsistent()) {
try {
app_builder & b = get_app_builder();

View file

@ -63,6 +63,7 @@ class blastenv {
abstract_expr_manager m_abstract_expr_manager;
relation_info_getter m_rel_getter;
refl_info_getter m_refl_getter;
symm_info_getter m_symm_getter;
class tctx : public type_context {
blastenv & m_benv;
@ -442,6 +443,7 @@ public:
m_abstract_expr_manager(m_fun_info_manager),
m_rel_getter(mk_relation_info_getter(env)),
m_refl_getter(mk_refl_info_getter(env)),
m_symm_getter(mk_symm_info_getter(env)),
m_tctx(*this),
m_normalizer(m_tctx) {
init_uref_mref_href_idxs();
@ -580,6 +582,10 @@ public:
return static_cast<bool>(m_refl_getter(rop));
}
bool is_symmetric(name const & rop) const {
return static_cast<bool>(m_symm_getter(rop));
}
optional<relation_info> get_relation_info(name const & rop) const {
return m_rel_getter(rop);
}
@ -643,6 +649,11 @@ bool is_reflexive(name const & rop) {
return g_blastenv->is_reflexive(rop);
}
bool is_symmetric(name const & rop) {
lean_assert(g_blastenv);
return g_blastenv->is_symmetric(rop);
}
optional<relation_info> get_relation_info(name const & rop) {
lean_assert(g_blastenv);
return g_blastenv->get_relation_info(rop);

View file

@ -45,6 +45,7 @@ inline optional<relation_info> is_relation(expr const & R) {
return is_constant(R) ? get_relation_info(const_name(R)) : optional<relation_info>();
}
bool is_reflexive(name const & rop);
bool is_symmetric(name const & rop);
/** \brief Put the given expression in weak-head-normal-form with respect to the
current state being processed by the blast tactic. */

View file

@ -83,6 +83,11 @@ scope_congruence_closure::~scope_congruence_closure() {
g_congr_cache = static_cast<congr_cache*>(m_old_cache);
}
void congruence_closure::initialize() {
mk_entry_for(get_iff_name(), mk_true());
mk_entry_for(get_iff_name(), mk_false());
}
void congruence_closure::mk_entry_for(name const & R, expr const & e) {
lean_assert(!m_entries.find(eqc_key(R, e)));
entry n;
@ -147,13 +152,224 @@ static optional<ext_congr_lemma> mk_ext_congr_lemma(name const & R, expr const &
}
void congruence_closure::add_occurrence(name const & Rp, expr const & parent, name const & Rc, expr const & child) {
// TODO(Leo):
std::cout << Rp << parent << Rc << child << "\n";
child_key k(Rc, child);
parent_occ_set ps;
if (auto old_ps = m_parents.find(k))
ps = *old_ps;
ps.insert(parent_occ(Rp, parent));
m_parents.insert(k, ps);
}
/* Small hack for not storing a pointer to the congruence_closure object
at congruence_closure::congr_key_cmp */
LEAN_THREAD_PTR(congruence_closure, g_cc);
/* Auxiliary function for comparing (lhs1 ~ rhs1) and (lhs2 ~ rhs2),
when ~ is symmetric.
It returns 0 (equal) for (a ~ b) (b ~ a) */
int congruence_closure::compare_symm(name const & R, expr lhs1, expr rhs1, expr lhs2, expr rhs2) const {
lhs1 = get_root(R, lhs1);
rhs1 = get_root(R, rhs1);
lhs2 = get_root(R, lhs2);
rhs2 = get_root(R, rhs2);
if (is_lt(lhs1, rhs1, true))
std::swap(lhs1, rhs1);
if (is_lt(lhs2, rhs2, true))
std::swap(lhs2, rhs2);
if (lhs1 != lhs2)
return is_lt(lhs1, lhs2, true) ? -1 : 1;
if (rhs1 != rhs2)
return is_lt(rhs1, rhs2, true) ? -1 : 1;
return 0;
}
int congruence_closure::compare_root(name const & R, expr e1, expr e2) const {
e1 = get_root(R, e1);
e2 = get_root(R, e2);
return expr_quick_cmp()(e1, e2);
}
int congruence_closure::congr_key_cmp::operator()(congr_key const & k1, congr_key const & k2) const {
if (k1.m_hash != k2.m_hash)
return unsigned_cmp()(k1.m_hash, k2.m_hash);
if (k1.m_R != k2.m_R)
return quick_cmp(k1.m_R, k2.m_R);
if (k1.m_eq != k2.m_eq)
return k1.m_eq ? -1 : 1;
if (k2.m_iff != k2.m_iff)
return k1.m_iff ? -1 : 1;
if (k2.m_symm_rel != k2.m_symm_rel)
return k1.m_symm_rel ? -1 : 1;
if (k1.m_eq || k1.m_iff) {
name const & R = k1.m_eq ? get_eq_name() : get_iff_name();
expr const & lhs1 = app_arg(app_fn(k1.m_expr));
expr const & rhs1 = app_arg(k1.m_expr);
expr const & lhs2 = app_arg(app_fn(k2.m_expr));
expr const & rhs2 = app_arg(k2.m_expr);
return g_cc->compare_symm(R, lhs1, rhs1, lhs2, rhs2);
} else if (k1.m_symm_rel) {
name R1, R2;
expr lhs1, rhs1, lhs2, rhs2;
lean_verify(is_relation_app(k1.m_expr, R1, lhs1, rhs1));
lean_verify(is_relation_app(k2.m_expr, R2, lhs2, rhs2));
if (R1 != R2)
return quick_cmp(R1, R2);
return g_cc->compare_symm(R1, lhs1, rhs1, lhs2, rhs2);
} else {
lean_assert(!k1.m_eq && !k2.m_eq && !k1.m_iff && !k2.m_iff &&
!k1.m_symm_rel && !k2.m_symm_rel);
lean_assert(k1.m_R == k2.m_R);
buffer<expr> args1, args2;
expr const & fn1 = get_app_args(k1.m_expr, args1);
expr const & fn2 = get_app_args(k2.m_expr, args2);
if (args1.size() != args2.size())
return unsigned_cmp()(args1.size(), args2.size());
auto lemma = mk_ext_congr_lemma(k1.m_R, fn1, args1.size());
lean_assert(lemma);
if (!lemma->m_fixed_fun) {
int r = g_cc->compare_root(get_eq_name(), fn1, fn2);
if (r != 0) return r;
for (unsigned i = 0; i < args1.size(); i++) {
r = g_cc->compare_root(get_eq_name(), args1[i], args2[i]);
if (r != 0) return r;
}
return 0;
} else {
list<optional<name>> const * it1 = &lemma->m_rel_names;
list<congr_arg_kind> const * it2 = &lemma->m_congr_lemma.get_arg_kinds();
int r;
for (unsigned i = 0; i < args1.size(); i++) {
lean_assert(*it1); lean_assert(*it2);
switch (head(*it2)) {
case congr_arg_kind::Eq:
lean_assert(head(*it1));
r = g_cc->compare_root(*head(*it1), args1[i], args2[i]);
if (r != 0) return r;
break;
case congr_arg_kind::Fixed:
r = expr_quick_cmp()(args1[i], args2[i]);
if (r != 0) return r;
break;
case congr_arg_kind::Cast:
// do nothing... ignore argument
break;
}
it1 = &(tail(*it1));
it2 = &(tail(*it2));
}
return 0;
}
}
}
unsigned congruence_closure::symm_hash(name const & R, expr const & lhs, expr const & rhs) const {
unsigned h1 = get_root(R, lhs).hash();
unsigned h2 = get_root(R, rhs).hash();
if (h1 > h2)
std::swap(h1, h2);
return (h1 << 16) | (h2 & 0xFFFF);
}
auto congruence_closure::mk_congr_key(ext_congr_lemma const & lemma, expr const & e) const -> congr_key {
congr_key k;
k.m_R = lemma.m_R;
k.m_expr = e;
lean_assert(is_app(e));
name R; expr lhs, rhs;
if (is_eq(e, lhs, rhs)) {
k.m_eq = true;
k.m_hash = symm_hash(get_eq_name(), lhs, rhs);
} else if (is_iff(e, lhs, rhs)) {
k.m_iff = true;
k.m_hash = symm_hash(get_iff_name(), lhs, rhs);
} else if (is_relation_app(e, R, lhs, rhs) && is_symmetric(R)) {
k.m_symm_rel = true;
k.m_hash = symm_hash(R, lhs, rhs);
} else {
buffer<expr> args;
expr const & fn = get_app_args(e, args);
if (!lemma.m_fixed_fun) {
unsigned h = get_root(get_eq_name(), fn).hash();
for (unsigned i = 0; i < args.size(); i++) {
h = hash(h, get_root(get_eq_name(), args[i]).hash());
}
k.m_hash = h;
} else {
unsigned h = fn.hash();
list<optional<name>> const * it1 = &lemma.m_rel_names;
list<congr_arg_kind> const * it2 = &lemma.m_congr_lemma.get_arg_kinds();
for (unsigned i = 0; i < args.size(); i++) {
lean_assert(*it1); lean_assert(*it2);
switch (head(*it2)) {
case congr_arg_kind::Eq:
lean_assert(head(*it1));
h = hash(h, get_root(*head(*it1), args[i]).hash());
break;
case congr_arg_kind::Fixed:
h = hash(h, args[i].hash());
break;
case congr_arg_kind::Cast:
// do nothing... ignore argument
break;
}
it1 = &(tail(*it1));
it2 = &(tail(*it2));
}
k.m_hash = h;
}
}
return k;
}
static expr * g_congr_mark = nullptr; // dummy congruence proof, it is just a placeholder.
static expr * g_iff_true_mark = nullptr; // dummy iff_true proof, it is just a placeholder.
typedef std::tuple<name, expr, expr, expr> cc_todo_entry;
MK_THREAD_LOCAL_GET_DEF(std::vector<cc_todo_entry>, get_todo);
static void clear_todo() {
get_todo().clear();
}
void congruence_closure::check_iff_true(congr_key const & k) {
expr const & e = k.m_expr;
name R; expr lhs, rhs;
if (k.m_eq || k.m_iff) {
R = k.m_eq ? get_eq_name() : get_iff_name();
lhs = app_arg(app_fn(e));
rhs = app_arg(e);
} else if (k.m_symm_rel) {
lean_verify(is_relation_app(e, R, lhs, rhs));
} else {
return;
}
if (is_eqv(get_iff_name(), e, mk_true()))
return; // it is already equivalent to true
lhs = get_root(R, lhs);
rhs = get_root(R, rhs);
if (lhs != rhs)
return;
// Add e <-> true
get_todo().emplace_back(get_iff_name(), e, mk_true(), *g_iff_true_mark);
}
void congruence_closure::add_congruence_table(ext_congr_lemma const & lemma, expr const & e) {
// TODO(Leo):
std::cout << lemma.m_R << e << "\n";
lean_assert(is_app(e));
congr_key k = mk_congr_key(lemma, e);
if (auto old_k = m_congruences.find(k)) {
// Found new equivalence: e ~ old_k->m_expr
// 1. Update m_cg_root field for e
eqc_key k(lemma.m_R, e);
entry new_entry = *m_entries.find(k);
new_entry.m_cg_root = old_k->m_expr;
m_entries.insert(k, new_entry);
// 2. Put new equivalence in the TODO queue
get_todo().emplace_back(lemma.m_R, e, old_k->m_expr, *g_congr_mark);
} else {
m_congruences.insert(k);
}
check_iff_true(k);
}
void congruence_closure::internalize(name const & R, expr const & e) {
@ -216,14 +432,6 @@ void congruence_closure::internalize(expr const & e) {
internalize(get_eq_name(), e);
}
typedef std::tuple<name, expr, expr, expr> cc_todo_entry;
MK_THREAD_LOCAL_GET_DEF(std::vector<cc_todo_entry>, get_todo);
static void clear_todo() {
get_todo().clear();
}
/*
The fields m_target and m_proof in e's entry are encoding a transitivity proof
Let target(e) and proof(e) denote these fields.
@ -253,13 +461,28 @@ void congruence_closure::invert_trans(name const & R, expr const & e) {
}
void congruence_closure::remove_parents(name const & R, expr const & e) {
std::cout << R << " " << e << "\n";
// TODO(Leo):
auto ps = m_parents.find(child_key(R, e));
if (!ps) return;
ps->for_each([&](parent_occ const & p) {
expr const & fn = get_app_fn(p.m_expr);
unsigned nargs = get_app_num_args(p.m_expr);
auto lemma = mk_ext_congr_lemma(p.m_R, fn, nargs);
lean_assert(lemma);
congr_key k = mk_congr_key(*lemma, p.m_expr);
m_congruences.erase(k);
});
}
void congruence_closure::insert_parents(name const & R, expr const & e) {
std::cout << R << " " << e << "\n";
// TODO(Leo):
void congruence_closure::reinsert_parents(name const & R, expr const & e) {
auto ps = m_parents.find(child_key(R, e));
if (!ps) return;
ps->for_each([&](parent_occ const & p) {
expr const & fn = get_app_fn(p.m_expr);
unsigned nargs = get_app_num_args(p.m_expr);
auto lemma = mk_ext_congr_lemma(p.m_R, fn, nargs);
lean_assert(lemma);
add_congruence_table(*lemma, p.m_expr);
});
}
void congruence_closure::add_eqv_step(name const & R, expr e1, expr e2, expr const & H) {
@ -310,7 +533,7 @@ void congruence_closure::add_eqv_step(name const & R, expr e1, expr e2, expr con
it = new_it_n.m_next;
} while (it != e1);
insert_parents(R, e1);
reinsert_parents(R, e1);
// update next of e1_root and e2_root, and size of e2_root
r1 = m_entries.find(eqc_key(R, e1_root));
@ -325,6 +548,20 @@ void congruence_closure::add_eqv_step(name const & R, expr e1, expr e2, expr con
m_entries.insert(eqc_key(R, e1_root), new_r1);
m_entries.insert(eqc_key(R, e2_root), new_r2);
lean_assert(check_invariant());
// copy e1_root parents to e2_root
child_key k1(R, e1_root);
auto ps1 = m_parents.find(k1);
if (!ps1) return; // e1_root doesn't have parents
parent_occ_set ps2;
child_key k2(R, e2_root);
if (auto it = m_parents.find(k2))
ps2 = *it;
ps1->for_each([&](parent_occ const & p) {
ps2.insert(p);
});
m_parents.erase(k1);
m_parents.insert(k2, ps2);
}
void congruence_closure::add_eqv(name const & _R, expr const & _lhs, expr const & _rhs, expr const & _H) {
@ -341,6 +578,7 @@ void congruence_closure::add_eqv(name const & _R, expr const & _lhs, expr const
void congruence_closure::add(hypothesis_idx hidx) {
if (is_inconsistent())
return;
flet<congruence_closure *> set_cc(g_cc, this);
clear_todo();
state & s = curr_state();
app_builder & b = get_app_builder();
@ -479,7 +717,7 @@ expr congruence_closure::get_root(name const & R, expr const & e) const {
if (auto n = m_entries.find(eqc_key(R, e))) {
return n->m_root;
} else {
return e;;
return e;
}
}
@ -487,7 +725,7 @@ expr congruence_closure::get_next(name const & R, expr const & e) const {
if (auto n = m_entries.find(eqc_key(R, e))) {
return n->m_next;
} else {
return e;;
return e;
}
}
@ -505,7 +743,7 @@ void congruence_closure::display_eqc(name const & R, expr const & e) const {
out << "}";
}
void congruence_closure::display() const {
void congruence_closure::display_eqcs() const {
auto out = diagnostic(env(), ios());
m_entries.for_each([&](eqc_key const & k, entry const & n) {
if (k.m_expr == n.m_root) {
@ -515,6 +753,33 @@ void congruence_closure::display() const {
});
}
static void display_rel(io_state_stream & out, name const & R) {
if (R != get_eq_name())
out << "[" << R << "] ";
}
void congruence_closure::display_parents() const {
auto out = diagnostic(env(), ios());
m_parents.for_each([&](child_key const & k, parent_occ_set const & ps) {
display_rel(out, k.m_R);
out << ppb(k.m_expr);
out << ", parents: {";
bool first = true;
ps.for_each([&](parent_occ const & o) {
if (first) first = false; else out << ", ";
display_rel(out, o.m_R);
out << ppb(o.m_expr);
});
out << "}\n";
});
}
void congruence_closure::display() const {
diagnostic(env(), ios()) << "congruence closure state\n";
display_eqcs();
display_parents();
}
bool congruence_closure::check_eqc(name const & R, expr const & e) const {
expr root = get_root(R, e);
unsigned size = 0;
@ -548,4 +813,15 @@ bool congruence_closure::check_invariant() const {
// TODO(Leo):
return true;
}
void initialize_congruence_closure() {
name prefix = name::mk_internal_unique_name();
g_congr_mark = new expr(mk_constant(name(prefix, "[congruence]")));
g_iff_true_mark = new expr(mk_constant(name(prefix, "[iff-true]")));
}
void finalize_congruence_closure() {
delete g_congr_mark;
delete g_iff_true_mark;
}
}}

View file

@ -76,34 +76,47 @@ class congruence_closure {
unsigned m_eq:1; // true if m_expr is an equality
unsigned m_iff:1; // true if m_expr is an iff
unsigned m_symm_rel:1; // true if m_expr is another symmetric relation.
congr_key() { m_eq = 0; m_iff = 0; m_symm_rel = 0; }
};
struct congr_key_cmp {
int operator()(congr_key const & k1, congr_key const & k2);
int operator()(congr_key const & k1, congr_key const & k2) const;
};
typedef rb_tree<expr, expr_quick_cmp> expr_set;
typedef rb_map<eqc_key, entry, eqc_key_cmp> entries;
// TODO(Leo): fix and take relation into account
typedef rb_map<expr, expr_set, expr_quick_cmp> parents;
typedef rb_tree<congr_key, congr_key_cmp> congruences;
typedef rb_tree<expr, expr_quick_cmp> expr_set;
typedef rb_map<eqc_key, entry, eqc_key_cmp> entries;
typedef eqc_key child_key;
typedef eqc_key_cmp child_key_cmp;
typedef eqc_key parent_occ;
typedef eqc_key_cmp parent_occ_cmp;
typedef rb_tree<parent_occ, parent_occ_cmp> parent_occ_set;
typedef rb_map<child_key, parent_occ_set, child_key_cmp> parents;
typedef rb_tree<congr_key, congr_key_cmp> congruences;
entries m_entries;
parents m_parents;
congruences m_congruences;
int compare_symm(name const & R, expr lhs1, expr rhs1, expr lhs2, expr rhs2) const;
int compare_root(name const & R, expr e1, expr e2) const;
unsigned symm_hash(name const & R, expr const & lhs, expr const & rhs) const;
congr_key mk_congr_key(ext_congr_lemma const & lemma, expr const & e) const;
void check_iff_true(congr_key const & k);
void mk_entry_for(name const & R, expr const & e);
void add_occurrence(name const & Rp, expr const & parent, name const & Rc, expr const & child);
void add_congruence_table(ext_congr_lemma const & lemma, expr const & e);
void invert_trans(name const & R, expr const & e, optional<expr> new_target, optional<expr> new_proof);
void invert_trans(name const & R, expr const & e);
void remove_parents(name const & R, expr const & e);
void insert_parents(name const & R, expr const & e);
void reinsert_parents(name const & R, expr const & e);
void add_eqv_step(name const & R, expr e1, expr e2, expr const & H);
void add_eqv(name const & R, expr const & lhs, expr const & rhs, expr const & H);
void display_eqc(name const & R, expr const & e) const;
public:
void initialize();
/** \brief Register expression \c e in this data-structure.
It creates entries for each sub-expression in \c e.
It also updates the m_parents mapping.
@ -160,6 +173,8 @@ public:
/** \brief dump for debugging purposes. */
void display() const;
void display_eqcs() const;
void display_parents() const;
bool check_eqc(name const & R, expr const & e) const;
bool check_invariant() const;
};
@ -171,4 +186,7 @@ public:
scope_congruence_closure();
~scope_congruence_closure();
};
void initialize_congruence_closure();
void finalize_congruence_closure();
}}

View file

@ -10,6 +10,7 @@ Author: Leonardo de Moura
#include "library/blast/blast_tactic.h"
#include "library/blast/simplifier.h"
#include "library/blast/options.h"
#include "library/blast/congruence_closure.h"
#include "library/blast/recursor_action.h"
#include "library/blast/assert_cc_action.h"
#include "library/blast/backward/init_module.h"
@ -27,8 +28,10 @@ void initialize_blast_module() {
initialize_blast_tactic();
blast::initialize_recursor_action();
blast::initialize_assert_cc_action();
blast::initialize_congruence_closure();
}
void finalize_blast_module() {
blast::finalize_congruence_closure();
blast::finalize_assert_cc_action();
blast::finalize_recursor_action();
finalize_blast_tactic();

View file

@ -34,12 +34,12 @@ class simple_strategy : public strategy {
trace_action("activate");
Try(assumption_contradiction_actions(*hidx));
TrySolve(assert_cc_action(*hidx));
Try(subst_action(*hidx));
Try(no_confusion_action(*hidx));
Try(discard_action(*hidx));
Try(forward_action(*hidx));
Try(recursor_preprocess_action(*hidx));
TrySolve(assert_cc_action(*hidx));
return action_result::new_branch();
}