diff --git a/library/hott/axioms/funext.lean b/library/hott/axioms/funext.lean index a17d79ff5..497cb71d2 100644 --- a/library/hott/axioms/funext.lean +++ b/library/hott/axioms/funext.lean @@ -14,7 +14,7 @@ set_option pp.universes true -- Define function extensionality as a type class inductive funext.{l} [class] : Type.{l+3} := - mk : (Π {A : Type.{l+1}} {P : A → Type.{l+2}} (f g : Π x, P x), IsEquiv (@apD10 A P f g)) + mk : (Π (A : Type.{l+1}) (P : A → Type.{l+2}) (f g : Π x, P x), IsEquiv (@apD10 A P f g)) → funext.{l} namespace funext @@ -23,11 +23,11 @@ namespace funext universe l parameters [F : funext.{l}] {A : Type.{l+1}} {P : A → Type.{l+2}} (f g : Π x, P x) - protected definition apply [instance] : IsEquiv (@apD10 A P f g) := - rec_on F (λ H, sorry) + protected definition ap [instance] : IsEquiv (@apD10 A P f g) := + rec_on F (λ (H : Π A P f g, _), !H) definition path_forall : f ∼ g → f ≈ g := - @IsEquiv.inv _ _ (@apD10 A P f g) apply + @IsEquiv.inv _ _ (@apD10 A P f g) ap end diff --git a/library/hott/axioms/ua.lean b/library/hott/axioms/ua.lean index 12439ebc4..fa3179006 100644 --- a/library/hott/axioms/ua.lean +++ b/library/hott/axioms/ua.lean @@ -5,7 +5,6 @@ import hott.path hott.equiv open path Equiv -set_option pp.universes true --Ensure that the types compared are in the same universe section universe variable l @@ -29,8 +28,8 @@ namespace ua_type parameters [F : ua_type.{k}] {A B: Type.{k}} -- Make the Equivalence given by the axiom an instance - protected definition inst [instance] : IsEquiv (equiv_path A B) := - rec_on F (λ H, sorry) + protected definition inst [instance] : IsEquiv (equiv_path.{k} A B) := + rec_on F (λ H, H A B) -- This is the version of univalence axiom we will probably use most often definition ua : A ≃ B → A ≈ B := diff --git a/library/hott/funext_varieties.lean b/library/hott/funext_varieties.lean index c593f5934..6e1f05012 100644 --- a/library/hott/funext_varieties.lean +++ b/library/hott/funext_varieties.lean @@ -28,7 +28,7 @@ definition weak_funext.{l} := definition funext_implies_naive_funext [F : funext] : naive_funext := (λ A P f g h, have Fefg: IsEquiv (@apD10 A P f g), - from (@funext.apply F A P f g), + from (@funext.ap F A P f g), have eq1 : _, from (@IsEquiv.inv _ _ (@apD10 A P f g) Fefg h), eq1 )