Add goodies for extended numerals

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-07-18 17:41:21 -07:00
parent 7dbd87e382
commit 2db2383b09

264
src/numerics/xnumeral.h Normal file
View file

@ -0,0 +1,264 @@
/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include <iostream>
#include "numeric_traits.h"
#include "debug.h"
namespace lean {
// Goodies (templates) for computing with extended numeral.
// Given a numeric set S, the extended set S+ is S union {-oo, +oo},
// where -oo is a new number smaller than any number in S, and +oo is a number bigger than
// any number in S.
//
// We do not provide a class extended numeral, since we do not want to commit
// with any particular representation.
// We just provide functions for computing with them.
enum xnumeral_kind { XN_MINUS_INFINITY, XN_NUMERAL, XN_PLUS_INFINITY };
template<typename T>
bool is_zero(T const & a, xnumeral_kind ak) {
return ak == XN_NUMERAL && numeric_traits<T>::is_zero(a);
}
template<typename T>
bool is_pos(T const & a, xnumeral_kind ak) {
return ak == XN_PLUS_INFINITY || (ak == XN_NUMERAL && numeric_traits<T>::is_pos(a));
}
template<typename T>
bool is_neg(T const & a, xnumeral_kind ak) {
return ak == XN_MINUS_INFINITY || (ak == XN_NUMERAL && numeric_traits<T>::is_neg(a));
}
inline bool is_infinite(xnumeral_kind ak) {
return ak != XN_NUMERAL;
}
template<typename T>
void set(T & a, xnumeral_kind & ak, T const & b, xnumeral_kind bk) {
a = b;
ak = bk;
}
template<typename T>
void reset(T & a, xnumeral_kind & ak) {
numeric_traits<T>::reset(a);
ak = XN_NUMERAL;
}
template<typename T>
void neg(T & a, xnumeral_kind & ak) {
switch (ak) {
case XN_MINUS_INFINITY:
ak = XN_PLUS_INFINITY;
break;
case XN_NUMERAL:
numeric_traits<T>::neg(a);
break;
case XN_PLUS_INFINITY:
ak = XN_MINUS_INFINITY;
break;
}
}
template<typename T>
void inv(T & a, xnumeral_kind & ak) {
lean_assert(numeral_manager::field());
switch (ak) {
case XN_MINUS_INFINITY:
ak = XN_NUMERAL;
numeric_traits<T>::reset(a);
break;
case XN_NUMERAL:
lean_assert(!numeric_traits<T>::is_zero(a));
numeric_traits<T>::inv(a);
break;
case XN_PLUS_INFINITY:
ak = XN_NUMERAL;
numeric_traits<T>::reset(a);
break;
}
}
template<typename T>
void add(T & r, xnumeral_kind & rk, T const & a, xnumeral_kind ak, T const & b, xnumeral_kind bk) {
lean_assert(!(ak == XN_MINUS_INFINITY && bk == XN_PLUS_INFINITY)); // result is undefined
lean_assert(!(ak == XN_PLUS_INFINITY && bk == XN_MINUS_INFINITY)); // result is undefined
if (ak != XN_NUMERAL) {
numeric_traits<T>::reset(r);
rk = ak;
}
else if (bk != XN_NUMERAL) {
numeric_traits<T>::reset(r);
rk = bk;
}
else {
r = a + b;
rk = XN_NUMERAL;
}
}
template<typename T>
void sub(T & r, xnumeral_kind & rk, T const & a, xnumeral_kind ak, T const & b, xnumeral_kind bk) {
lean_assert(!(ak == XN_MINUS_INFINITY && bk == XN_MINUS_INFINITY)); // result is undefined
lean_assert(!(ak == XN_PLUS_INFINITY && bk == XN_PLUS_INFINITY)); // result is undefined
if (ak != XN_NUMERAL) {
lean_assert(bk != ak);
numeric_traits<T>::reset(r);
rk = ak;
}
else {
switch (bk) {
case XN_MINUS_INFINITY:
numeric_traits<T>::reset(r);
rk = XN_PLUS_INFINITY;
break;
case XN_NUMERAL:
r = a - b;
rk = XN_NUMERAL;
break;
case XN_PLUS_INFINITY:
numeric_traits<T>::reset(r);
rk = XN_MINUS_INFINITY;
break;
}
}
}
template<typename T>
void mul(T & r, xnumeral_kind & rk, T const & a, xnumeral_kind ak, T const & b, xnumeral_kind bk) {
if (is_zero(a, ak) || is_zero(b, bk)) {
numeric_traits<T>::reset(r);
rk = XN_NUMERAL;
}
else if (is_infinite(ak) || is_infinite(bk)) {
if (is_pos(a, ak) == is_pos(b, bk))
rk = XN_PLUS_INFINITY;
else
rk = XN_MINUS_INFINITY;
numeric_traits<T>::reset(r);
}
else {
rk = XN_NUMERAL;
r = a * b;
}
}
template<typename T>
void div(T & r, xnumeral_kind & rk, T const & a, xnumeral_kind ak, T const & b, xnumeral_kind bk) {
lean_assert(!is_zero(b, bk));
if (is_zero(a, ak)) {
lean_assert(!is_zero(b, bk));
numeric_traits<T>::reset(r);
rk = XN_NUMERAL;
}
else if (is_infinite(ak)) {
lean_assert(!is_infinite(bk));
if (is_pos(a, ak) == is_pos(b, bk))
rk = XN_PLUS_INFINITY;
else
rk = XN_MINUS_INFINITY;
numeric_traits<T>::reset(r);
}
else if (is_infinite(bk)) {
lean_assert(!is_infinite(ak));
numeric_traits<T>::reset(r);
rk = XN_NUMERAL;
}
else {
rk = XN_NUMERAL;
c = a / b;
}
}
template<typename T>
void power(T & a, xnumeral_kind & ak, unsigned n) {
switch (ak) {
case XN_MINUS_INFINITY:
if (n % 2 == 0)
ak = XN_PLUS_INFINITY;
break;
case XN_NUMERAL:
numeric_traits<T>::power(a, n);
break;
case XN_PLUS_INFINITY:
break; // do nothing
}
}
/**
\brief Return true if (a,ak) == (b,bk).
*/
template<typename T>
bool eq(T const & a, xnumeral_kind ak, T const & b, xnumeral_kind bk) {
if (ak == XN_NUMERAL) {
return bk == XN_NUMERAL && a == b;
}
else {
return ak == bk;
}
}
template<typename T>
bool neq(T const & a, xnumeral_kind ak, T const & b, xnumeral_kind bk) {
return !eq(m, a, ak, b, bk);
}
template<typename T>
bool lt(T const & a, xnumeral_kind ak, T const & b, xnumeral_kind bk) {
switch (ak) {
case XN_MINUS_INFINITY:
return bk != XN_MINUS_INFINITY;
case XN_NUMERAL:
switch (bk) {
case XN_MINUS_INFINITY:
return false;
case XN_NUMERAL:
return a < b;
case XN_PLUS_INFINITY:
return true;
default:
UNREACHABLE();
return false;
}
case XN_PLUS_INFINITY:
return false;
default:
lean_unreachable();
return false;
}
}
template<typename T>
bool gt(T const & a, xnumeral_kind ak, T const & b, xnumeral_kind bk) {
return lt(m, b, bk, a, ak);
}
template<typename T>
bool le(T const & a, xnumeral_kind ak, T const & b, xnumeral_kind bk) {
return !gt(m, a, ak, b, bk);
}
template<typename T>
bool ge(T const & a, xnumeral_kind ak, T const & b, xnumeral_kind bk) {
return !lt(m, a, ak, b, bk);
}
template<typename T>
void display(std::ostream & out, T const & a, xnumeral_kind ak) {
switch (ak) {
case XN_MINUS_INFINITY: out << "-oo"; break;
case XN_NUMERAL: out << a; break;
case XN_PLUS_INFINITY: out << "+oo"; break;
}
}
}