fix(frontends/lean/notation): change the precedence of '->'
It should match the precedence of the implication '=>'. Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
d79a626523
commit
2ddcc32c1d
14 changed files with 54 additions and 23 deletions
|
@ -7,7 +7,7 @@ Author: Leonardo de Moura
|
||||||
#pragma once
|
#pragma once
|
||||||
namespace lean {
|
namespace lean {
|
||||||
constexpr unsigned g_eq_precedence = 50;
|
constexpr unsigned g_eq_precedence = 50;
|
||||||
constexpr unsigned g_arrow_precedence = 70;
|
constexpr unsigned g_arrow_precedence = 25;
|
||||||
class frontend;
|
class frontend;
|
||||||
void init_builtin_notation(frontend & fe);
|
void init_builtin_notation(frontend & fe);
|
||||||
}
|
}
|
||||||
|
|
|
@ -2,7 +2,7 @@ Variable A : Type
|
||||||
Variable B : Type
|
Variable B : Type
|
||||||
Variable A' : Type
|
Variable A' : Type
|
||||||
Variable B' : Type
|
Variable B' : Type
|
||||||
Axiom H : A -> B = A' -> B'
|
Axiom H : (A -> B) = (A' -> B')
|
||||||
Variable a : A
|
Variable a : A
|
||||||
Check DomInj H
|
Check DomInj H
|
||||||
Theorem BeqB' : B = B' := RanInj H a
|
Theorem BeqB' : B = B' := RanInj H a
|
||||||
|
|
|
@ -4,10 +4,10 @@ Eval cast (Refl A) x
|
||||||
Eval x = (cast (Refl A) x)
|
Eval x = (cast (Refl A) x)
|
||||||
Variable b : B
|
Variable b : B
|
||||||
Definition f (x : A) : B := b
|
Definition f (x : A) : B := b
|
||||||
Axiom H : A -> B = A' -> B
|
Axiom H : (A -> B) = (A' -> B)
|
||||||
Variable a' : A'
|
Variable a' : A'
|
||||||
Eval (cast H f) a'
|
Eval (cast H f) a'
|
||||||
Axiom H2 : A -> B = A' -> B'
|
Axiom H2 : (A -> B) = (A' -> B')
|
||||||
Definition g (x : B') : Nat := 0
|
Definition g (x : B') : Nat := 0
|
||||||
Eval g ((cast H2 f) a')
|
Eval g ((cast H2 f) a')
|
||||||
Check g ((cast H2 f) a')
|
Check g ((cast H2 f) a')
|
||||||
|
|
|
@ -6,19 +6,19 @@ Variable D : Pi (A A' : Type) (B : A -> Type) (B' : A' -> Type) (H : (Pi x : A,
|
||||||
Variable R : Pi (A A' : Type) (B : A -> Type) (B' : A' -> Type) (H : (Pi x : A, B x) = (Pi x : A', B' x)) (a : A),
|
Variable R : Pi (A A' : Type) (B : A -> Type) (B' : A' -> Type) (H : (Pi x : A, B x) = (Pi x : A', B' x)) (a : A),
|
||||||
(B a) = (B' (C A A' (D A A' B B' H) a))
|
(B a) = (B' (C A A' (D A A' B B' H) a))
|
||||||
|
|
||||||
Theorem R2 (A A' B B' : Type) (H : A -> B = A' -> B') (a : A) : B = B' := R _ _ _ _ H a
|
Theorem R2 (A A' B B' : Type) (H : (A -> B) = (A' -> B')) (a : A) : B = B' := R _ _ _ _ H a
|
||||||
|
|
||||||
Show Environment 1
|
Show Environment 1
|
||||||
|
|
||||||
Theorem R3 : Pi (A1 A2 B1 B2 : Type) (H : A1 -> B1 = A2 -> B2) (a : A1), B1 = B2 :=
|
Theorem R3 : Pi (A1 A2 B1 B2 : Type) (H : (A1 -> B1) = (A2 -> B2)) (a : A1), B1 = B2 :=
|
||||||
fun (A1 A2 B1 B2 : Type) (H : A1 -> B1 = A2 -> B2) (a : A1),
|
fun (A1 A2 B1 B2 : Type) (H : (A1 -> B1) = (A2 -> B2)) (a : A1),
|
||||||
R _ _ _ _ H a
|
R _ _ _ _ H a
|
||||||
|
|
||||||
Theorem R4 : Pi (A1 A2 B1 B2 : Type) (H : A1 -> B1 = A2 -> B2) (a : A1), B1 = B2 :=
|
Theorem R4 : Pi (A1 A2 B1 B2 : Type) (H : (A1 -> B1) = (A2 -> B2)) (a : A1), B1 = B2 :=
|
||||||
fun (A1 A2 B1 B2 : Type) (H : A1 -> B1 = A2 -> B2) (a : _),
|
fun (A1 A2 B1 B2 : Type) (H : (A1 -> B1) = (A2 -> B2)) (a : _),
|
||||||
R _ _ _ _ H a
|
R _ _ _ _ H a
|
||||||
|
|
||||||
Theorem R5 : Pi (A1 A2 B1 B2 : Type) (H : A1 -> B1 = A2 -> B2) (a : A1), B1 = B2 :=
|
Theorem R5 : Pi (A1 A2 B1 B2 : Type) (H : (A1 -> B1) = (A2 -> B2)) (a : A1), B1 = B2 :=
|
||||||
fun (A1 A2 B1 B2 : Type) (H : _) (a : _),
|
fun (A1 A2 B1 B2 : Type) (H : _) (a : _),
|
||||||
R _ _ _ _ H a
|
R _ _ _ _ H a
|
||||||
|
|
||||||
|
|
|
@ -4,9 +4,9 @@
|
||||||
Assumed: D
|
Assumed: D
|
||||||
Assumed: R
|
Assumed: R
|
||||||
Proved: R2
|
Proved: R2
|
||||||
Theorem R2 (A A' B B' : Type) (H : A → B = A' → B') (a : A) : B = B' := R A A' (λ x : A, B) (λ x : A', B') H a
|
Theorem R2 (A A' B B' : Type) (H : (A → B) = (A' → B')) (a : A) : B = B' := R A A' (λ x : A, B) (λ x : A', B') H a
|
||||||
Proved: R3
|
Proved: R3
|
||||||
Proved: R4
|
Proved: R4
|
||||||
Proved: R5
|
Proved: R5
|
||||||
Theorem R5 (A1 A2 B1 B2 : Type) (H : A1 → B1 = A2 → B2) (a : A1) : B1 = B2 :=
|
Theorem R5 (A1 A2 B1 B2 : Type) (H : (A1 → B1) = (A2 → B2)) (a : A1) : B1 = B2 :=
|
||||||
R A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|
R A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|
||||||
|
|
|
@ -5,7 +5,7 @@ Variable D : Pi (A A' : Type) (B : A -> Type) (B' : A' -> Type) (H : (Pi x : A,
|
||||||
Variable R : Pi (A A' : Type) (B : A -> Type) (B' : A' -> Type) (H : (Pi x : A, B x) = (Pi x : A', B' x)) (a : A),
|
Variable R : Pi (A A' : Type) (B : A -> Type) (B' : A' -> Type) (H : (Pi x : A, B x) = (Pi x : A', B' x)) (a : A),
|
||||||
(B a) = (B' (C A A' (D A A' B B' H) a))
|
(B a) = (B' (C A A' (D A A' B B' H) a))
|
||||||
|
|
||||||
Theorem R2 : Pi (A1 A2 B1 B2 : Type) (H : A1 -> B1 = A2 -> B2) (a : A1), B1 = B2 :=
|
Theorem R2 : Pi (A1 A2 B1 B2 : Type) (H : (A1 -> B1) = (A2 -> B2)) (a : A1), B1 = B2 :=
|
||||||
fun A1 A2 B1 B2 H a,
|
fun A1 A2 B1 B2 H a,
|
||||||
R _ _ _ _ H a
|
R _ _ _ _ H a
|
||||||
|
|
||||||
|
|
|
@ -4,5 +4,5 @@
|
||||||
Assumed: D
|
Assumed: D
|
||||||
Assumed: R
|
Assumed: R
|
||||||
Proved: R2
|
Proved: R2
|
||||||
Theorem R2 (A1 A2 B1 B2 : Type) (H : A1 → B1 = A2 → B2) (a : A1) : B1 = B2 :=
|
Theorem R2 (A1 A2 B1 B2 : Type) (H : (A1 → B1) = (A2 → B2)) (a : A1) : B1 = B2 :=
|
||||||
R A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|
R A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|
||||||
|
|
|
@ -5,7 +5,7 @@ Variable D {A A' : Type} {B : A -> Type} {B' : A' -> Type} (H : (Pi x : A, B x)
|
||||||
Variable R {A A' : Type} {B : A -> Type} {B' : A' -> Type} (H : (Pi x : A, B x) = (Pi x : A', B' x)) (a : A) :
|
Variable R {A A' : Type} {B : A -> Type} {B' : A' -> Type} (H : (Pi x : A, B x) = (Pi x : A', B' x)) (a : A) :
|
||||||
(B a) = (B' (C (D H) a))
|
(B a) = (B' (C (D H) a))
|
||||||
|
|
||||||
Theorem R2 : Pi (A1 A2 B1 B2 : Type) (H : A1 -> B1 = A2 -> B2) (a : A1), B1 = B2 :=
|
Theorem R2 : Pi (A1 A2 B1 B2 : Type) (H : (A1 -> B1) = (A2 -> B2)) (a : A1), B1 = B2 :=
|
||||||
fun A1 A2 B1 B2 H a, R H a
|
fun A1 A2 B1 B2 H a, R H a
|
||||||
|
|
||||||
Set pp::implicit true
|
Set pp::implicit true
|
||||||
|
|
|
@ -5,7 +5,7 @@ Variable D {A A' : Type} {B : A -> Type} {B' : A' -> Type} (H : (Pi x : A, B x)
|
||||||
Variable R {A A' : Type} {B : A -> Type} {B' : A' -> Type} (H : (Pi x : A, B x) = (Pi x : A', B' x)) (a : A) :
|
Variable R {A A' : Type} {B : A -> Type} {B' : A' -> Type} (H : (Pi x : A, B x) = (Pi x : A', B' x)) (a : A) :
|
||||||
(B a) = (B' (C (D H) a))
|
(B a) = (B' (C (D H) a))
|
||||||
|
|
||||||
Theorem R2 : Pi (A1 A2 B1 B2 : Type), (A1 -> B1 = A2 -> B2) -> A1 -> (B1 = B2) :=
|
Theorem R2 : Pi (A1 A2 B1 B2 : Type), ((A1 -> B1) = (A2 -> B2)) -> A1 -> (B1 = B2) :=
|
||||||
fun A1 A2 B1 B2 H a, R H a
|
fun A1 A2 B1 B2 H a, R H a
|
||||||
|
|
||||||
Set pp::implicit true
|
Set pp::implicit true
|
||||||
|
|
14
tests/lean/interactive/t11.lean
Normal file
14
tests/lean/interactive/t11.lean
Normal file
|
@ -0,0 +1,14 @@
|
||||||
|
(**
|
||||||
|
auto = REPEAT(ORELSE(conj_hyp_tac, conj_tac, assumption_tac))
|
||||||
|
**)
|
||||||
|
|
||||||
|
Theorem T2 (A B : Bool) : A /\ B -> B /\ A :=
|
||||||
|
fun assumption : A /\ B,
|
||||||
|
let lemma1 : A := _,
|
||||||
|
lemma2 : B := _,
|
||||||
|
conclusion : B /\ A := _
|
||||||
|
in conclusion.
|
||||||
|
apply auto. done.
|
||||||
|
apply auto. done.
|
||||||
|
apply auto. done.
|
||||||
|
|
17
tests/lean/interactive/t11.lean.expected.out
Normal file
17
tests/lean/interactive/t11.lean.expected.out
Normal file
|
@ -0,0 +1,17 @@
|
||||||
|
Type Ctrl-D or 'Exit.' to exit or 'Help.' for help.
|
||||||
|
# Set: pp::colors
|
||||||
|
Set: pp::unicode
|
||||||
|
Proof state:
|
||||||
|
A : Bool, B : Bool, assumption : A ∧ B ⊢ A
|
||||||
|
## Proof state:
|
||||||
|
no goals
|
||||||
|
## Proof state:
|
||||||
|
A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A ⊢ B
|
||||||
|
## Proof state:
|
||||||
|
no goals
|
||||||
|
## Proof state:
|
||||||
|
A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A, lemma2 : B ⊢ B ∧ A
|
||||||
|
## Proof state:
|
||||||
|
no goals
|
||||||
|
## Proved: T2
|
||||||
|
#
|
|
@ -13,7 +13,7 @@
|
||||||
Defined: select
|
Defined: select
|
||||||
Defined: map
|
Defined: map
|
||||||
Axiom two_lt_three : two < three
|
Axiom two_lt_three : two < three
|
||||||
Definition vector (A : Type) (n : N) : Type := Π (i : N), (i < n) → A
|
Definition vector (A : Type) (n : N) : Type := Π (i : N), i < n → A
|
||||||
Definition const {A : Type} (n : N) (d : A) : vector A n := λ (i : N) (H : i < n), d
|
Definition const {A : Type} (n : N) (d : A) : vector A n := λ (i : N) (H : i < n), d
|
||||||
Definition const::explicit (A : Type) (n : N) (d : A) : vector A n := const n d
|
Definition const::explicit (A : Type) (n : N) (d : A) : vector A n := const n d
|
||||||
Definition update {A : Type} {n : N} (v : vector A n) (i : N) (d : A) : vector A n :=
|
Definition update {A : Type} {n : N} (v : vector A n) (i : N) (d : A) : vector A n :=
|
||||||
|
@ -30,7 +30,7 @@ if (two == two) ⊤ ⊥
|
||||||
update (const three ⊥) two ⊤ : vector Bool three
|
update (const three ⊥) two ⊤ : vector Bool three
|
||||||
|
|
||||||
--------
|
--------
|
||||||
select::explicit : Π (A : Type) (n : N) (v : vector A n) (i : N), (i < n) → A
|
select::explicit : Π (A : Type) (n : N) (v : vector A n) (i : N), i < n → A
|
||||||
|
|
||||||
map type --->
|
map type --->
|
||||||
map::explicit : Π (A B C : Type) (n : N), (A → B → C) → (vector A n) → (vector B n) → (vector C n)
|
map::explicit : Π (A B C : Type) (n : N), (A → B → C) → (vector A n) → (vector B n) → (vector C n)
|
||||||
|
@ -39,11 +39,11 @@ map normal form -->
|
||||||
λ (A B C : Type)
|
λ (A B C : Type)
|
||||||
(n : N)
|
(n : N)
|
||||||
(f : A → B → C)
|
(f : A → B → C)
|
||||||
(v1 : Π (i : N), (i < n) → A)
|
(v1 : Π (i : N), i < n → A)
|
||||||
(v2 : Π (i : N), (i < n) → B)
|
(v2 : Π (i : N), i < n → B)
|
||||||
(i : N)
|
(i : N)
|
||||||
(H : i < n),
|
(H : i < n),
|
||||||
f (v1 i H) (v2 i H)
|
f (v1 i H) (v2 i H)
|
||||||
|
|
||||||
update normal form -->
|
update normal form -->
|
||||||
λ (A : Type) (n : N) (v : Π (i : N), (i < n) → A) (i : N) (d : A) (j : N) (H : j < n), if (j == i) d (v j H)
|
λ (A : Type) (n : N) (v : Π (i : N), i < n → A) (i : N) (d : A) (j : N) (H : j < n), if (j == i) d (v j H)
|
||||||
|
|
|
@ -6,7 +6,7 @@
|
||||||
⊤
|
⊤
|
||||||
Assumed: a
|
Assumed: a
|
||||||
a ⊕ a ⊕ a
|
a ⊕ a ⊕ a
|
||||||
Subst::explicit : Π (A : Type U) (a b : A) (P : A → Bool), (P a) → (a == b) → (P b)
|
Subst::explicit : Π (A : Type U) (a b : A) (P : A → Bool), (P a) → a == b → (P b)
|
||||||
Proved: EM2
|
Proved: EM2
|
||||||
EM2 : Π a : Bool, a ∨ ¬ a
|
EM2 : Π a : Bool, a ∨ ¬ a
|
||||||
EM2 a : a ∨ ¬ a
|
EM2 a : a ∨ ¬ a
|
||||||
|
|
|
@ -11,7 +11,7 @@ f::explicit ((N → N) → N → N) (λ x : N → N, x) (λ y : N → N, y)
|
||||||
EqNice::explicit N n1 n2
|
EqNice::explicit N n1 n2
|
||||||
f::explicit N n1 n2 : N
|
f::explicit N n1 n2 : N
|
||||||
Congr::explicit :
|
Congr::explicit :
|
||||||
Π (A : Type U) (B : A → (Type U)) (f g : Π x : A, B x) (a b : A), (f == g) → (a == b) → ((f a) == (g b))
|
Π (A : Type U) (B : A → (Type U)) (f g : Π x : A, B x) (a b : A), f == g → a == b → (f a) == (g b)
|
||||||
f::explicit N n1 n2
|
f::explicit N n1 n2
|
||||||
Assumed: a
|
Assumed: a
|
||||||
Assumed: b
|
Assumed: b
|
||||||
|
|
Loading…
Reference in a new issue