feat(library/algebra/ring_power): add properties of power in ring structures
This commit is contained in:
parent
31aeff95d5
commit
2e3b1b04cd
3 changed files with 86 additions and 2 deletions
|
@ -13,7 +13,9 @@ Algebraic structures.
|
|||
* [ring](ring.lean)
|
||||
* [ordered_group](ordered_group.lean)
|
||||
* [ordered_ring](ordered_ring.lean)
|
||||
* [ring_power](ring_power.lean) : power in ring structures
|
||||
* [field](field.lean)
|
||||
* [ordered_field](ordered_field.lean)
|
||||
|
||||
* [category](category/category.md) : category theory
|
||||
|
||||
|
|
63
library/algebra/ring_power.lean
Normal file
63
library/algebra/ring_power.lean
Normal file
|
@ -0,0 +1,63 @@
|
|||
/-
|
||||
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Jeremy Avigad
|
||||
|
||||
Properties of the power operation in an ordered ring.
|
||||
|
||||
(Right now, this file is just a stub. More soon.)
|
||||
-/
|
||||
import .group_power
|
||||
open nat
|
||||
|
||||
namespace algebra
|
||||
|
||||
variable {A : Type}
|
||||
|
||||
section linear_ordered_semiring
|
||||
variable [s : linear_ordered_semiring A]
|
||||
include s
|
||||
|
||||
theorem pow_pos_of_pos {x : A} (i : ℕ) (H : x > 0) : x^i > 0 :=
|
||||
begin
|
||||
induction i with [j, ih],
|
||||
{show (1 : A) > 0, from zero_lt_one},
|
||||
{show x^(succ j) > 0, from mul_pos ih H}
|
||||
end
|
||||
|
||||
theorem pow_nonneg_of_nonneg {x : A} (i : ℕ) (H : x ≥ 0) : x^i ≥ 0 :=
|
||||
begin
|
||||
induction i with [j, ih],
|
||||
{show (1 : A) ≥ 0, from le_of_lt zero_lt_one},
|
||||
{show x^(succ j) ≥ 0, from mul_nonneg ih H}
|
||||
end
|
||||
|
||||
theorem pow_le_pow_of_le {x y : A} (i : ℕ) (H₁ : 0 ≤ x) (H₂ : x ≤ y) : x^i ≤ y^i :=
|
||||
begin
|
||||
induction i with [i, ih],
|
||||
{rewrite *pow_zero, apply le.refl},
|
||||
rewrite *pow_succ,
|
||||
have H : 0 ≤ y^i, from pow_nonneg_of_nonneg i (le.trans H₁ H₂),
|
||||
apply mul_le_mul ih H₂ H₁ H
|
||||
end
|
||||
|
||||
theorem pow_ge_one {x : A} (i : ℕ) (xge1 : x ≥ 1) : x^i ≥ 1 :=
|
||||
assert H : x^i ≥ 1^i, from pow_le_pow_of_le i (le_of_lt zero_lt_one) xge1,
|
||||
by rewrite one_pow at H; exact H
|
||||
|
||||
set_option formatter.hide_full_terms false
|
||||
|
||||
theorem pow_gt_one {x : A} {i : ℕ} (xgt1 : x > 1) (ipos : i > 0) : x^i > 1 :=
|
||||
assert xpos : x > 0, from lt.trans zero_lt_one xgt1,
|
||||
begin
|
||||
induction i with [i, ih],
|
||||
{exfalso, exact !nat.lt.irrefl ipos},
|
||||
have xige1 : x^i ≥ 1, from pow_ge_one _ (le_of_lt xgt1),
|
||||
rewrite [pow_succ', -mul_one 1, ↑has_lt.gt],
|
||||
apply mul_lt_mul xgt1 xige1 zero_lt_one,
|
||||
apply le_of_lt xpos
|
||||
end
|
||||
|
||||
end linear_ordered_semiring
|
||||
|
||||
end algebra
|
|
@ -5,7 +5,7 @@ Authors: Leonardo de Moura, Jeremy Avigad
|
|||
|
||||
The power function on the natural numbers.
|
||||
-/
|
||||
import data.nat.basic data.nat.order data.nat.div data.nat.gcd algebra.group_power
|
||||
import data.nat.basic data.nat.order data.nat.div data.nat.gcd algebra.ring_power
|
||||
|
||||
namespace nat
|
||||
|
||||
|
@ -17,14 +17,33 @@ section migrate_algebra
|
|||
definition pow (a : ℕ) (n : ℕ) : ℕ := algebra.pow a n
|
||||
infix ^ := pow
|
||||
|
||||
theorem pow_le_pow_of_le {x y : ℕ} (i : ℕ) (H : x ≤ y) : x^i ≤ y^i :=
|
||||
algebra.pow_le_pow_of_le i !zero_le H
|
||||
|
||||
migrate from algebra with nat
|
||||
replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt, pow → pow
|
||||
hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos,
|
||||
add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le,
|
||||
le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg,
|
||||
lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right, pos_of_mul_pos_left, pos_of_mul_pos_right
|
||||
lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right, pos_of_mul_pos_left, pos_of_mul_pos_right,
|
||||
pow_nonneg_of_nonneg
|
||||
end migrate_algebra
|
||||
|
||||
-- generalize to semirings?
|
||||
theorem le_pow_self {x : ℕ} (H : x > 1) : ∀ i, i ≤ x^i
|
||||
| 0 := !zero_le
|
||||
| (succ j) := have xpos : x > 0, from lt.trans zero_lt_one H,
|
||||
have xjge1 : x^j ≥ 1, from succ_le_of_lt (pow_pos_of_pos _ xpos),
|
||||
have xge2 : x ≥ 2, from succ_le_of_lt H,
|
||||
calc
|
||||
succ j = j + 1 : rfl
|
||||
... ≤ x^j + 1 : add_le_add_right (le_pow_self j)
|
||||
... ≤ x^j + x^j : add_le_add_left xjge1
|
||||
... = x^j * (1 + 1) : by rewrite [mul.left_distrib, *mul_one]
|
||||
... = x^j * 2 : rfl
|
||||
... ≤ x^j * x : mul_le_mul_left _ xge2
|
||||
... = x^(succ j) : rfl
|
||||
|
||||
-- TODO: eventually this will be subsumed under the algebraic theorems
|
||||
|
||||
theorem mul_self_eq_pow_2 (a : nat) : a * a = pow a 2 :=
|
||||
|
|
Loading…
Reference in a new issue