feat(library/algebra/ring_power): add properties of power in ring structures

This commit is contained in:
Jeremy Avigad 2015-07-08 11:27:55 +10:00 committed by Leonardo de Moura
parent 31aeff95d5
commit 2e3b1b04cd
3 changed files with 86 additions and 2 deletions

View file

@ -13,7 +13,9 @@ Algebraic structures.
* [ring](ring.lean) * [ring](ring.lean)
* [ordered_group](ordered_group.lean) * [ordered_group](ordered_group.lean)
* [ordered_ring](ordered_ring.lean) * [ordered_ring](ordered_ring.lean)
* [ring_power](ring_power.lean) : power in ring structures
* [field](field.lean) * [field](field.lean)
* [ordered_field](ordered_field.lean) * [ordered_field](ordered_field.lean)
* [category](category/category.md) : category theory * [category](category/category.md) : category theory

View file

@ -0,0 +1,63 @@
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Properties of the power operation in an ordered ring.
(Right now, this file is just a stub. More soon.)
-/
import .group_power
open nat
namespace algebra
variable {A : Type}
section linear_ordered_semiring
variable [s : linear_ordered_semiring A]
include s
theorem pow_pos_of_pos {x : A} (i : ) (H : x > 0) : x^i > 0 :=
begin
induction i with [j, ih],
{show (1 : A) > 0, from zero_lt_one},
{show x^(succ j) > 0, from mul_pos ih H}
end
theorem pow_nonneg_of_nonneg {x : A} (i : ) (H : x ≥ 0) : x^i ≥ 0 :=
begin
induction i with [j, ih],
{show (1 : A) ≥ 0, from le_of_lt zero_lt_one},
{show x^(succ j) ≥ 0, from mul_nonneg ih H}
end
theorem pow_le_pow_of_le {x y : A} (i : ) (H₁ : 0 ≤ x) (H₂ : x ≤ y) : x^i ≤ y^i :=
begin
induction i with [i, ih],
{rewrite *pow_zero, apply le.refl},
rewrite *pow_succ,
have H : 0 ≤ y^i, from pow_nonneg_of_nonneg i (le.trans H₁ H₂),
apply mul_le_mul ih H₂ H₁ H
end
theorem pow_ge_one {x : A} (i : ) (xge1 : x ≥ 1) : x^i ≥ 1 :=
assert H : x^i ≥ 1^i, from pow_le_pow_of_le i (le_of_lt zero_lt_one) xge1,
by rewrite one_pow at H; exact H
set_option formatter.hide_full_terms false
theorem pow_gt_one {x : A} {i : } (xgt1 : x > 1) (ipos : i > 0) : x^i > 1 :=
assert xpos : x > 0, from lt.trans zero_lt_one xgt1,
begin
induction i with [i, ih],
{exfalso, exact !nat.lt.irrefl ipos},
have xige1 : x^i ≥ 1, from pow_ge_one _ (le_of_lt xgt1),
rewrite [pow_succ', -mul_one 1, ↑has_lt.gt],
apply mul_lt_mul xgt1 xige1 zero_lt_one,
apply le_of_lt xpos
end
end linear_ordered_semiring
end algebra

View file

@ -5,7 +5,7 @@ Authors: Leonardo de Moura, Jeremy Avigad
The power function on the natural numbers. The power function on the natural numbers.
-/ -/
import data.nat.basic data.nat.order data.nat.div data.nat.gcd algebra.group_power import data.nat.basic data.nat.order data.nat.div data.nat.gcd algebra.ring_power
namespace nat namespace nat
@ -17,14 +17,33 @@ section migrate_algebra
definition pow (a : ) (n : ) : := algebra.pow a n definition pow (a : ) (n : ) : := algebra.pow a n
infix ^ := pow infix ^ := pow
theorem pow_le_pow_of_le {x y : } (i : ) (H : x ≤ y) : x^i ≤ y^i :=
algebra.pow_le_pow_of_le i !zero_le H
migrate from algebra with nat migrate from algebra with nat
replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt, pow → pow replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt, pow → pow
hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos, hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos,
add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le, add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le,
le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg, le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg,
lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right, pos_of_mul_pos_left, pos_of_mul_pos_right lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right, pos_of_mul_pos_left, pos_of_mul_pos_right,
pow_nonneg_of_nonneg
end migrate_algebra end migrate_algebra
-- generalize to semirings?
theorem le_pow_self {x : } (H : x > 1) : ∀ i, i ≤ x^i
| 0 := !zero_le
| (succ j) := have xpos : x > 0, from lt.trans zero_lt_one H,
have xjge1 : x^j ≥ 1, from succ_le_of_lt (pow_pos_of_pos _ xpos),
have xge2 : x ≥ 2, from succ_le_of_lt H,
calc
succ j = j + 1 : rfl
... ≤ x^j + 1 : add_le_add_right (le_pow_self j)
... ≤ x^j + x^j : add_le_add_left xjge1
... = x^j * (1 + 1) : by rewrite [mul.left_distrib, *mul_one]
... = x^j * 2 : rfl
... ≤ x^j * x : mul_le_mul_left _ xge2
... = x^(succ j) : rfl
-- TODO: eventually this will be subsumed under the algebraic theorems -- TODO: eventually this will be subsumed under the algebraic theorems
theorem mul_self_eq_pow_2 (a : nat) : a * a = pow a 2 := theorem mul_self_eq_pow_2 (a : nat) : a * a = pow a 2 :=