feat(library/init/logic): 'if-then-else' and 'dependent-if-then-else' congruence theorems
We will use these theorems to test the new simplifier.
This commit is contained in:
parent
50fe4ec6c0
commit
2f9005827c
2 changed files with 44 additions and 21 deletions
|
@ -506,6 +506,27 @@ assume Hc, eq.rec_on (if_pos Hc) h
|
||||||
theorem implies_of_if_neg {c t e : Prop} [H : decidable c] (h : if c then t else e) : ¬c → e :=
|
theorem implies_of_if_neg {c t e : Prop} [H : decidable c] (h : if c then t else e) : ¬c → e :=
|
||||||
assume Hnc, eq.rec_on (if_neg Hnc) h
|
assume Hnc, eq.rec_on (if_neg Hnc) h
|
||||||
|
|
||||||
|
theorem if_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A}
|
||||||
|
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
|
||||||
|
(if b then x else y) = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
|
||||||
|
assert dec_c : decidable c, from decidable_of_decidable_of_iff dec_b h_c,
|
||||||
|
decidable.rec_on dec_b
|
||||||
|
(λ hp : b, calc
|
||||||
|
(if b then x else y)
|
||||||
|
= x : if_pos hp
|
||||||
|
... = u : h_t (iff.mp h_c hp)
|
||||||
|
... = (if c then u else v) : if_pos (iff.mp h_c hp))
|
||||||
|
(λ hn : ¬b, calc
|
||||||
|
(if b then x else y)
|
||||||
|
= y : if_neg hn
|
||||||
|
... = v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
|
||||||
|
... = (if c then u else v) : if_neg (iff.mp (not_iff_not_of_iff h_c) hn))
|
||||||
|
|
||||||
|
theorem if_congr {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A}
|
||||||
|
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
|
||||||
|
(if b then x else y) = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
|
||||||
|
@if_ctx_congr A b c dec_b x y u v h_c (λ h, h_t) (λ h, h_e)
|
||||||
|
|
||||||
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
|
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
|
||||||
-- to the branches
|
-- to the branches
|
||||||
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
|
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
|
||||||
|
@ -523,6 +544,29 @@ decidable.rec
|
||||||
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
|
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
|
||||||
H
|
H
|
||||||
|
|
||||||
|
theorem dif_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b]
|
||||||
|
{x : b → A} {u : c → A} {y : ¬b → A} {v : ¬c → A}
|
||||||
|
(h_c : b ↔ c)
|
||||||
|
(h_t : ∀ (h : c), x (iff.mp' h_c h) = u h)
|
||||||
|
(h_e : ∀ (h : ¬c), y (iff.mp' (not_iff_not_of_iff h_c) h) = v h) :
|
||||||
|
(@dite b dec_b A x y) = (@dite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
|
||||||
|
assert dec_c : decidable c, from decidable_of_decidable_of_iff dec_b h_c,
|
||||||
|
decidable.rec_on dec_b
|
||||||
|
(λ hp : b, calc
|
||||||
|
(if h : b then x h else y h)
|
||||||
|
= x hp : dif_pos hp
|
||||||
|
... = x (iff.mp' h_c (iff.mp h_c hp)) : proof_irrel
|
||||||
|
... = u (iff.mp h_c hp) : h_t
|
||||||
|
... = (if h : c then u h else v h) : dif_pos (iff.mp h_c hp))
|
||||||
|
(λ hn : ¬b,
|
||||||
|
let h_nc : ¬b ↔ ¬c := not_iff_not_of_iff h_c in
|
||||||
|
calc
|
||||||
|
(if h : b then x h else y h)
|
||||||
|
= y hn : dif_neg hn
|
||||||
|
... = y (iff.mp' h_nc (iff.mp h_nc hn)) : proof_irrel
|
||||||
|
... = v (iff.mp h_nc hn) : h_e
|
||||||
|
... = (if h : c then u h else v h) : dif_neg (iff.mp h_nc hn))
|
||||||
|
|
||||||
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
|
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
|
||||||
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
|
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
|
||||||
rfl
|
rfl
|
||||||
|
|
|
@ -248,25 +248,4 @@ section
|
||||||
|
|
||||||
definition if_false (t e : A) : (if false then t else e) = e :=
|
definition if_false (t e : A) : (if false then t else e) = e :=
|
||||||
if_neg not_false
|
if_neg not_false
|
||||||
|
|
||||||
theorem if_congr_cond [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) (t e : A) :
|
|
||||||
(if c₁ then t else e) = (if c₂ then t else e) :=
|
|
||||||
decidable.rec_on H₁
|
|
||||||
(λ Hc₁ : c₁, decidable.rec_on H₂
|
|
||||||
(λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹)
|
|
||||||
(λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂))
|
|
||||||
(λ Hnc₁ : ¬c₁, decidable.rec_on H₂
|
|
||||||
(λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁)
|
|
||||||
(λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹))
|
|
||||||
|
|
||||||
theorem if_congr_aux [H₁ : decidable c₁] [H₂ : decidable c₂] {t₁ t₂ e₁ e₂ : A}
|
|
||||||
(Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
|
||||||
(if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) :=
|
|
||||||
Ht ▸ He ▸ (if_congr_cond Hc t₁ e₁)
|
|
||||||
|
|
||||||
theorem if_congr [H₁ : decidable c₁] {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂)
|
|
||||||
(He : e₁ = e₂) :
|
|
||||||
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable_of_decidable_of_iff H₁ Hc) A t₂ e₂) :=
|
|
||||||
assert H2 : decidable c₂, from (decidable_of_decidable_of_iff H₁ Hc),
|
|
||||||
if_congr_aux Hc Ht He
|
|
||||||
end
|
end
|
||||||
|
|
Loading…
Reference in a new issue