fix(algebra/simplifier): update numeral simp rules
This commit is contained in:
parent
db59c6829c
commit
30b1b79c4e
2 changed files with 45 additions and 24 deletions
|
@ -37,45 +37,63 @@ end units
|
||||||
|
|
||||||
-- TODO(dhs): remove `add1` from the original lemmas and delete this
|
-- TODO(dhs): remove `add1` from the original lemmas and delete this
|
||||||
namespace numeral_helper
|
namespace numeral_helper
|
||||||
open algebra norm_num
|
open algebra
|
||||||
|
|
||||||
theorem bit1_add_bit1 {A : Type} [s : algebra.add_comm_semigroup A]
|
theorem bit1_add_bit1 {A : Type} [s : add_comm_semigroup A]
|
||||||
[s' : has_one A] (a b : A) : bit1 a + bit1 b = bit0 ((a + b) + 1)
|
[s' : has_one A] (a b : A) : bit1 a + bit1 b = bit0 ((a + b) + 1)
|
||||||
:= bit1_add_bit1 a b
|
:= norm_num.bit1_add_bit1 a b
|
||||||
|
|
||||||
theorem one_add_bit1 {A : Type} [s : add_comm_semigroup A] [s' : has_one A] (a : A)
|
|
||||||
: one + bit1 a = (bit1 a) + 1 := !add.comm
|
|
||||||
|
|
||||||
theorem bit1_add_one {A : Type} [s : add_comm_semigroup A] [s' : has_one A] (a : A)
|
theorem bit1_add_one {A : Type} [s : add_comm_semigroup A] [s' : has_one A] (a : A)
|
||||||
: bit1 a + one = bit0 (a + 1) := add1_bit1 a
|
: bit1 a + one = bit0 (a + 1) := norm_num.add1_bit1 a
|
||||||
|
|
||||||
|
theorem one_add_bit1 {A : Type} [s : add_comm_semigroup A] [s' : has_one A] (a : A)
|
||||||
|
: one + bit1 a = bit0 (a + 1) := by rewrite [!add.comm, bit1_add_one]
|
||||||
|
|
||||||
|
lemma one_add_bit0 [simp] {A : Type} [s : add_comm_semigroup A] [s' : has_one A] (a : A)
|
||||||
|
: 1 + bit0 a = bit1 a := norm_num.one_add_bit0 a
|
||||||
|
|
||||||
|
lemma bit0_add_one [simp] {A : Type} [s : add_comm_semigroup A] [s' : has_one A] (a : A)
|
||||||
|
: bit0 a + 1 = bit1 a := norm_num.bit0_add_one a
|
||||||
|
|
||||||
|
lemma mul_bit0_helper0 [simp] {A : Type} [s : comm_ring A] (a b : A)
|
||||||
|
: bit0 a * bit0 b = bit0 (bit0 a * b) := norm_num.mul_bit0_helper (bit0 a) b (bit0 a * b) rfl
|
||||||
|
|
||||||
|
lemma mul_bit0_helper1 [simp] {A : Type} [s : comm_ring A] (a b : A)
|
||||||
|
: bit1 a * bit0 b = bit0 (bit1 a * b) := norm_num.mul_bit0_helper (bit1 a) b (bit1 a * b) rfl
|
||||||
|
|
||||||
|
lemma mul_bit1_helper0 [simp] {A : Type} [s : comm_ring A] (a b : A)
|
||||||
|
: bit0 a * bit1 b = bit0 (bit0 a * b) + bit0 a := norm_num.mul_bit1_helper (bit0 a) b (bit0 a * b) (bit0 (bit0 a * b) + bit0 a) rfl rfl
|
||||||
|
|
||||||
|
lemma mul_bit1_helper1 [simp] {A : Type} [s : comm_ring A] (a b : A)
|
||||||
|
: bit1 a * bit1 b = bit0 (bit1 a * b) + bit1 a := norm_num.mul_bit1_helper (bit1 a) b (bit1 a * b) (bit0 (bit1 a * b) + bit1 a) rfl rfl
|
||||||
|
|
||||||
end numeral_helper
|
end numeral_helper
|
||||||
|
|
||||||
namespace numeral
|
namespace numeral
|
||||||
|
|
||||||
attribute norm_num.one_add_bit0 [simp]
|
|
||||||
attribute norm_num.bit0_add_one [simp]
|
|
||||||
attribute numeral_helper.one_add_bit1 [simp]
|
|
||||||
attribute numeral_helper.bit1_add_one [simp]
|
|
||||||
attribute norm_num.one_add_one [simp]
|
|
||||||
|
|
||||||
attribute norm_num.bit0_add_bit0 [simp]
|
attribute norm_num.bit0_add_bit0 [simp]
|
||||||
attribute norm_num.bit0_add_bit1 [simp]
|
attribute numeral_helper.bit1_add_one [simp]
|
||||||
attribute norm_num.bit1_add_bit0 [simp]
|
attribute norm_num.bit1_add_bit0 [simp]
|
||||||
|
|
||||||
attribute numeral_helper.bit1_add_bit1 [simp]
|
attribute numeral_helper.bit1_add_bit1 [simp]
|
||||||
|
attribute norm_num.bit0_add_bit1 [simp]
|
||||||
attribute algebra.one_mul [simp]
|
attribute numeral_helper.one_add_bit1 [simp]
|
||||||
attribute algebra.mul_one [simp]
|
|
||||||
|
|
||||||
attribute norm_num.mul_bit0 [simp]
|
|
||||||
attribute norm_num.mul_bit1 [simp]
|
|
||||||
|
|
||||||
attribute algebra.zero_add [simp]
|
attribute algebra.zero_add [simp]
|
||||||
attribute algebra.add_zero [simp]
|
attribute algebra.add_zero [simp]
|
||||||
|
|
||||||
|
attribute norm_num.one_add_one [simp]
|
||||||
|
attribute numeral_helper.one_add_bit0 [simp]
|
||||||
|
attribute numeral_helper.bit0_add_one [simp]
|
||||||
|
|
||||||
|
attribute numeral_helper.mul_bit0_helper0 [simp]
|
||||||
|
attribute numeral_helper.mul_bit0_helper1 [simp]
|
||||||
|
attribute numeral_helper.mul_bit1_helper0 [simp]
|
||||||
|
attribute numeral_helper.mul_bit1_helper1 [simp]
|
||||||
|
|
||||||
attribute algebra.zero_mul [simp]
|
attribute algebra.zero_mul [simp]
|
||||||
attribute algebra.mul_zero [simp]
|
attribute algebra.mul_zero [simp]
|
||||||
|
attribute algebra.one_mul [simp]
|
||||||
|
attribute algebra.mul_one [simp]
|
||||||
|
|
||||||
end numeral
|
end numeral
|
||||||
|
|
||||||
|
|
|
@ -1,9 +1,11 @@
|
||||||
import algebra.simplifier
|
import algebra.simplifier
|
||||||
open simplifier.numeral
|
|
||||||
open algebra
|
open algebra
|
||||||
|
|
||||||
set_option simplify.max_steps 500000
|
open simplifier.numeral
|
||||||
constants (A : Type.{1}) (A_comm_ring : algebra.comm_ring A)
|
|
||||||
|
set_option simplify.max_steps 5000000
|
||||||
|
universe l
|
||||||
|
constants (A : Type.{l}) (A_comm_ring : comm_ring A)
|
||||||
attribute A_comm_ring [instance]
|
attribute A_comm_ring [instance]
|
||||||
|
|
||||||
#simplify eq 0 (0:A) + 1
|
#simplify eq 0 (0:A) + 1
|
||||||
|
@ -27,6 +29,7 @@ attribute A_comm_ring [instance]
|
||||||
#simplify eq 0 (5:A) + 28
|
#simplify eq 0 (5:A) + 28
|
||||||
#simplify eq 0 (0 : A) + (2 + 3) + 7
|
#simplify eq 0 (0 : A) + (2 + 3) + 7
|
||||||
#simplify eq 0 (70 : A) + (33 + 2)
|
#simplify eq 0 (70 : A) + (33 + 2)
|
||||||
|
|
||||||
#simplify eq 0 (23000000000 : A) + 22000000000
|
#simplify eq 0 (23000000000 : A) + 22000000000
|
||||||
|
|
||||||
#simplify eq 0 (0 : A) * 0
|
#simplify eq 0 (0 : A) * 0
|
||||||
|
|
Loading…
Reference in a new issue