feat(library/theories/measure_theory/sigma_algebra): start with definition and properties of sigma algebras
This commit is contained in:
parent
721f6c87bf
commit
31aa256b99
2 changed files with 249 additions and 0 deletions
|
@ -2,3 +2,4 @@ measure_theory
|
|||
==============
|
||||
|
||||
* [extended_real](extended_real.lean)
|
||||
* [sigma_algebra](sigma_algebra.lean)
|
248
library/theories/measure_theory/sigma_algebra.lean
Normal file
248
library/theories/measure_theory/sigma_algebra.lean
Normal file
|
@ -0,0 +1,248 @@
|
|||
/-
|
||||
Copyright (c) 2016 Jacob Gross. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Jacob Gross, Jeremy Avigad
|
||||
|
||||
Sigma algebras.
|
||||
-/
|
||||
import data.set data.nat theories.topology.basic
|
||||
open eq.ops set nat
|
||||
|
||||
structure sigma_algebra [class] (X : Type) :=
|
||||
(sets : set (set X))
|
||||
(univ_mem_sets : univ ∈ sets)
|
||||
(comp_mem_sets : ∀ {s : set X}, s ∈ sets → (-s ∈ sets))
|
||||
(cUnion_mem_sets : ∀ {s : ℕ → set X}, (∀ i, s i ∈ sets) → (⋃ i, s i) ∈ sets)
|
||||
|
||||
/- Closure properties -/
|
||||
|
||||
namespace measure_theory
|
||||
open sigma_algebra
|
||||
|
||||
variables {X : Type} [sigma_algebra X]
|
||||
|
||||
definition measurable (t : set X) : Prop := t ∈ sets X
|
||||
|
||||
theorem measurable_univ : measurable (@univ X) :=
|
||||
univ_mem_sets X
|
||||
|
||||
theorem measurable_comp {s : set X} (H : measurable s) : measurable (-s) :=
|
||||
comp_mem_sets H
|
||||
|
||||
theorem measurable_of_measurable_comp {s : set X} (H : measurable (-s)) : measurable s :=
|
||||
!comp_comp ▸ measurable_comp H
|
||||
|
||||
theorem measurable_empty : measurable (∅ : set X) :=
|
||||
comp_univ ▸ measurable_comp measurable_univ
|
||||
|
||||
theorem measurable_cUnion {s : ℕ → set X} (H : ∀ i, measurable (s i)) :
|
||||
measurable (⋃ i, s i) :=
|
||||
cUnion_mem_sets H
|
||||
|
||||
theorem measurable_cInter {s : ℕ → set X} (H : ∀ i, measurable (s i)) :
|
||||
measurable (⋂ i, s i) :=
|
||||
have ∀ i, measurable (-(s i)), from take i, measurable_comp (H i),
|
||||
have measurable (-(⋃ i, -(s i))), from measurable_comp (measurable_cUnion this),
|
||||
show measurable (⋂ i, s i), using this, by rewrite Inter_eq_comp_Union_comp; apply this
|
||||
|
||||
theorem measurable_union {s t : set X} (Hs : measurable s) (Ht : measurable t) :
|
||||
measurable (s ∪ t) :=
|
||||
have ∀ i, measurable (bin_ext s t i), by intro i; cases i; exact Hs; exact Ht,
|
||||
show measurable (s ∪ t), using this, by rewrite -Union_bin_ext; exact measurable_cUnion this
|
||||
|
||||
theorem measurable_inter {s t : set X} (Hs : measurable s) (Ht : measurable t) :
|
||||
measurable (s ∩ t) :=
|
||||
have ∀ i, measurable (bin_ext s t i), by intro i; cases i; exact Hs; exact Ht,
|
||||
show measurable (s ∩ t), using this, by rewrite -Inter_bin_ext; exact measurable_cInter this
|
||||
|
||||
theorem measurable_diff {s t : set X} (Hs : measurable s) (Ht : measurable t) :
|
||||
measurable (s \ t) :=
|
||||
measurable_inter Hs (measurable_comp Ht)
|
||||
|
||||
theorem measurable_insert {x : X} {s : set X} (Hx : measurable '{x}) (Hs : measurable s) :
|
||||
measurable (insert x s) :=
|
||||
!insert_eq⁻¹ ▸ measurable_union Hx Hs
|
||||
|
||||
end measure_theory
|
||||
|
||||
/-
|
||||
-- Properties of sigma algebras
|
||||
-/
|
||||
|
||||
namespace sigma_algebra
|
||||
open measure_theory
|
||||
variable {X : Type}
|
||||
|
||||
protected theorem eq {M N : sigma_algebra X} (H : @sets X M = @sets X N) :
|
||||
M = N :=
|
||||
by cases M; cases N; cases H; apply rfl
|
||||
|
||||
/- sigma algebra generated by a set -/
|
||||
|
||||
inductive sets_generated_by (G : set (set X)) : set X → Prop :=
|
||||
| generators_mem : ∀ ⦃s : set X⦄, s ∈ G → sets_generated_by G s
|
||||
| univ_mem : sets_generated_by G univ
|
||||
| comp_mem : ∀ ⦃s : set X⦄, sets_generated_by G s → sets_generated_by G (-s)
|
||||
| cUnion_mem : ∀ ⦃s : ℕ → set X⦄, (∀ i, sets_generated_by G (s i)) →
|
||||
sets_generated_by G (⋃ i, s i)
|
||||
|
||||
protected definition generated_by {X : Type} (G : set (set X)) : sigma_algebra X :=
|
||||
⦃sigma_algebra,
|
||||
sets := sets_generated_by G,
|
||||
univ_mem_sets := sets_generated_by.univ_mem G,
|
||||
comp_mem_sets := sets_generated_by.comp_mem ,
|
||||
cUnion_mem_sets := sets_generated_by.cUnion_mem ⦄
|
||||
|
||||
theorem sets_generated_by_initial {G : set (set X)} {M : sigma_algebra X} (H : G ⊆ @sets _ M) :
|
||||
sets_generated_by G ⊆ @sets _ M :=
|
||||
begin
|
||||
intro s Hs,
|
||||
induction Hs with s sG s Hs ssX s Hs sisX,
|
||||
{exact H sG},
|
||||
{exact measurable_univ},
|
||||
{exact measurable_comp ssX},
|
||||
exact measurable_cUnion sisX
|
||||
end
|
||||
|
||||
theorem measurable_generated_by {G : set (set X)} :
|
||||
∀₀ s ∈ G, @measurable _ (sigma_algebra.generated_by G) s :=
|
||||
λ s H, sets_generated_by.generators_mem H
|
||||
|
||||
/- The collection of sigma algebras forms a complete lattice. -/
|
||||
|
||||
protected definition le (M N : sigma_algebra X) : Prop := @sets _ M ⊆ @sets _ N
|
||||
|
||||
definition sigma_algebra_has_le [reducible] [instance] :
|
||||
has_le (sigma_algebra X) :=
|
||||
has_le.mk sigma_algebra.le
|
||||
|
||||
protected theorem le_refl (M : sigma_algebra X) : M ≤ M := subset.refl (@sets _ M)
|
||||
|
||||
protected theorem le_trans (M N L : sigma_algebra X) : M ≤ N → N ≤ L → M ≤ L :=
|
||||
assume H1, assume H2,
|
||||
subset.trans H1 H2
|
||||
|
||||
protected theorem le_antisymm (M N : sigma_algebra X) : M ≤ N → N ≤ M → M = N :=
|
||||
assume H1, assume H2,
|
||||
sigma_algebra.eq (subset.antisymm H1 H2)
|
||||
|
||||
theorem generated_by_initial {G : set (set X)} {M : sigma_algebra X} (H : G ⊆ @sets X M) :
|
||||
sigma_algebra.generated_by G ≤ M :=
|
||||
sets_generated_by_initial H
|
||||
|
||||
protected definition inf (M N : sigma_algebra X) : sigma_algebra X :=
|
||||
⦃sigma_algebra,
|
||||
sets := @sets X M ∩ @sets X N,
|
||||
univ_mem_sets := abstract and.intro (@measurable_univ X M) (@measurable_univ X N) end,
|
||||
comp_mem_sets := abstract take s, assume Hs, and.intro
|
||||
(@measurable_comp X M s (and.elim_left Hs))
|
||||
(@measurable_comp X N s (and.elim_right Hs)) end,
|
||||
cUnion_mem_sets := abstract take s, assume Hs, and.intro
|
||||
(@measurable_cUnion X M s (λ i, and.elim_left (Hs i)))
|
||||
(@measurable_cUnion X N s (λ i, and.elim_right (Hs i))) end⦄
|
||||
|
||||
protected theorem inf_le_left (M N : sigma_algebra X) : sigma_algebra.inf M N ≤ M :=
|
||||
λ s, !inter_subset_left
|
||||
|
||||
protected theorem inf_le_right (M N : sigma_algebra X) : sigma_algebra.inf M N ≤ N :=
|
||||
λ s, !inter_subset_right
|
||||
|
||||
protected theorem le_inf (M N L : sigma_algebra X) (H1 : L ≤ M) (H2 : L ≤ N) :
|
||||
L ≤ sigma_algebra.inf M N :=
|
||||
λ s H, and.intro (H1 s H) (H2 s H)
|
||||
|
||||
protected definition Inf (MS : set (sigma_algebra X)) : sigma_algebra X :=
|
||||
⦃sigma_algebra,
|
||||
sets := ⋂ M ∈ MS, @sets _ M,
|
||||
univ_mem_sets := abstract take M, assume HM, @measurable_univ X M end,
|
||||
comp_mem_sets := abstract take s, assume Hs, take M, assume HM,
|
||||
measurable_comp (Hs M HM) end,
|
||||
cUnion_mem_sets := abstract take s, assume Hs, take M, assume HM,
|
||||
measurable_cUnion (λ i, Hs i M HM) end
|
||||
⦄
|
||||
|
||||
protected theorem Inf_le {M : sigma_algebra X} {MS : set (sigma_algebra X)} (MMS : M ∈ MS) :
|
||||
sigma_algebra.Inf MS ≤ M :=
|
||||
bInter_subset_of_mem MMS
|
||||
|
||||
protected theorem le_Inf {M : sigma_algebra X} {MS : set (sigma_algebra X)} (H : ∀₀ N ∈ MS, M ≤ N) :
|
||||
M ≤ sigma_algebra.Inf MS :=
|
||||
take s, assume Hs : s ∈ @sets _ M,
|
||||
take N, assume NMS : N ∈ MS,
|
||||
show s ∈ @sets _ N, from H NMS s Hs
|
||||
|
||||
protected definition sup (M N : sigma_algebra X) : sigma_algebra X :=
|
||||
sigma_algebra.generated_by (@sets _ M ∪ @sets _ N)
|
||||
|
||||
protected theorem le_sup_left (M N : sigma_algebra X) : M ≤ sigma_algebra.sup M N :=
|
||||
take s, assume Hs : s ∈ @sets _ M,
|
||||
measurable_generated_by (or.inl Hs)
|
||||
|
||||
protected theorem le_sup_right (M N : sigma_algebra X) : N ≤ sigma_algebra.sup M N :=
|
||||
take s, assume Hs : s ∈ @sets _ N,
|
||||
measurable_generated_by (or.inr Hs)
|
||||
|
||||
protected theorem sup_le {M N L : sigma_algebra X} (H1 : M ≤ L) (H2 : N ≤ L) :
|
||||
sigma_algebra.sup M N ≤ L :=
|
||||
have @sets _ M ∪ @sets _ N ⊆ @sets _ L, from union_subset H1 H2,
|
||||
sets_generated_by_initial this
|
||||
|
||||
protected definition Sup (MS : set (sigma_algebra X)) : sigma_algebra X :=
|
||||
sigma_algebra.generated_by (⋃ M ∈ MS, @sets _ M)
|
||||
|
||||
protected theorem le_Sup {M : sigma_algebra X} {MS : set (sigma_algebra X)} (MMS : M ∈ MS) :
|
||||
M ≤ sigma_algebra.Sup MS :=
|
||||
take s, assume Hs : s ∈ @sets _ M,
|
||||
measurable_generated_by (mem_bUnion MMS Hs)
|
||||
|
||||
protected theorem Sup_le {N : sigma_algebra X} {MS : set (sigma_algebra X)} (H : ∀₀ M ∈ MS, M ≤ N) :
|
||||
sigma_algebra.Sup MS ≤ N :=
|
||||
have (⋃ M ∈ MS, @sets _ M) ⊆ @sets _ N, from bUnion_subset H,
|
||||
sets_generated_by_initial this
|
||||
|
||||
protected definition complete_lattice [reducible] [trans_instance] :
|
||||
complete_lattice (sigma_algebra X) :=
|
||||
⦃complete_lattice,
|
||||
le := sigma_algebra.le,
|
||||
le_refl := sigma_algebra.le_refl,
|
||||
le_trans := sigma_algebra.le_trans,
|
||||
le_antisymm := sigma_algebra.le_antisymm,
|
||||
inf := sigma_algebra.inf,
|
||||
sup := sigma_algebra.sup,
|
||||
inf_le_left := sigma_algebra.inf_le_left,
|
||||
inf_le_right := sigma_algebra.inf_le_right,
|
||||
le_inf := sigma_algebra.le_inf,
|
||||
le_sup_left := sigma_algebra.le_sup_left,
|
||||
le_sup_right := sigma_algebra.le_sup_right,
|
||||
sup_le := @sigma_algebra.sup_le X,
|
||||
Inf := sigma_algebra.Inf,
|
||||
Sup := sigma_algebra.Sup,
|
||||
Inf_le := @sigma_algebra.Inf_le X,
|
||||
le_Inf := @sigma_algebra.le_Inf X,
|
||||
le_Sup := @sigma_algebra.le_Sup X,
|
||||
Sup_le := @sigma_algebra.Sup_le X⦄
|
||||
end sigma_algebra
|
||||
|
||||
/- Borel sets -/
|
||||
|
||||
namespace measure_theory
|
||||
|
||||
section
|
||||
open topology
|
||||
variables (X : Type) [topology X]
|
||||
|
||||
definition borel_algebra : sigma_algebra X :=
|
||||
sigma_algebra.generated_by (opens X)
|
||||
|
||||
variable {X}
|
||||
definition borel (s : set X) : Prop := @measurable _ (borel_algebra X) s
|
||||
|
||||
theorem borel_of_open {s : set X} (H : Open s) : borel s :=
|
||||
sigma_algebra.measurable_generated_by H
|
||||
|
||||
theorem borel_of_closed {s : set X} (H : closed s) : borel s :=
|
||||
have borel (-s), from borel_of_open H,
|
||||
@measurable_of_measurable_comp _ (borel_algebra X) _ this
|
||||
end
|
||||
|
||||
end measure_theory
|
Loading…
Reference in a new issue