refactor(library/algebra/ordered_ring): remove 0 ~= 1 from ordered_semiring, add 0 < 1 to linear_ordered_semiring
This commit is contained in:
parent
e35f05ad47
commit
31aeff95d5
2 changed files with 6 additions and 5 deletions
|
@ -19,7 +19,7 @@ definition absurd_a_lt_a {B : Type} {a : A} [s : strict_order A] (H : a < a) : B
|
||||||
absurd H (lt.irrefl a)
|
absurd H (lt.irrefl a)
|
||||||
|
|
||||||
structure ordered_semiring [class] (A : Type)
|
structure ordered_semiring [class] (A : Type)
|
||||||
extends semiring A, ordered_cancel_comm_monoid A, zero_ne_one_class A :=
|
extends semiring A, ordered_cancel_comm_monoid A :=
|
||||||
(mul_le_mul_of_nonneg_left: ∀a b c, le a b → le zero c → le (mul c a) (mul c b))
|
(mul_le_mul_of_nonneg_left: ∀a b c, le a b → le zero c → le (mul c a) (mul c b))
|
||||||
(mul_le_mul_of_nonneg_right: ∀a b c, le a b → le zero c → le (mul a c) (mul b c))
|
(mul_le_mul_of_nonneg_right: ∀a b c, le a b → le zero c → le (mul a c) (mul b c))
|
||||||
(mul_lt_mul_of_pos_left: ∀a b c, lt a b → lt zero c → lt (mul c a) (mul c b))
|
(mul_lt_mul_of_pos_left: ∀a b c, lt a b → lt zero c → lt (mul c a) (mul c b))
|
||||||
|
@ -100,13 +100,16 @@ section
|
||||||
end
|
end
|
||||||
|
|
||||||
structure linear_ordered_semiring [class] (A : Type)
|
structure linear_ordered_semiring [class] (A : Type)
|
||||||
extends ordered_semiring A, linear_strong_order_pair A
|
extends ordered_semiring A, linear_strong_order_pair A :=
|
||||||
|
(zero_lt_one : lt zero one)
|
||||||
|
|
||||||
section
|
section
|
||||||
variable [s : linear_ordered_semiring A]
|
variable [s : linear_ordered_semiring A]
|
||||||
variables {a b c : A}
|
variables {a b c : A}
|
||||||
include s
|
include s
|
||||||
|
|
||||||
|
theorem zero_lt_one : 0 < (1:A) := linear_ordered_semiring.zero_lt_one A
|
||||||
|
|
||||||
theorem lt_of_mul_lt_mul_left (H : c * a < c * b) (Hc : c ≥ 0) : a < b :=
|
theorem lt_of_mul_lt_mul_left (H : c * a < c * b) (Hc : c ≥ 0) : a < b :=
|
||||||
lt_of_not_ge
|
lt_of_not_ge
|
||||||
(assume H1 : b ≤ a,
|
(assume H1 : b ≤ a,
|
||||||
|
@ -378,7 +381,6 @@ section
|
||||||
(assume H : a ≤ 0, mul_nonneg_of_nonpos_of_nonpos H H)
|
(assume H : a ≤ 0, mul_nonneg_of_nonpos_of_nonpos H H)
|
||||||
|
|
||||||
theorem zero_le_one : 0 ≤ (1:A) := one_mul 1 ▸ mul_self_nonneg 1
|
theorem zero_le_one : 0 ≤ (1:A) := one_mul 1 ▸ mul_self_nonneg 1
|
||||||
theorem zero_lt_one : 0 < (1:A) := linear_ordered_ring.zero_lt_one A
|
|
||||||
|
|
||||||
theorem pos_and_pos_or_neg_and_neg_of_mul_pos {a b : A} (Hab : a * b > 0) :
|
theorem pos_and_pos_or_neg_and_neg_of_mul_pos {a b : A} (Hab : a * b > 0) :
|
||||||
(a > 0 ∧ b > 0) ∨ (a < 0 ∧ b < 0) :=
|
(a > 0 ∧ b > 0) ∨ (a < 0 ∧ b < 0) :=
|
||||||
|
|
|
@ -165,7 +165,7 @@ section migrate_algebra
|
||||||
add_lt_add_left := @add_lt_add_left,
|
add_lt_add_left := @add_lt_add_left,
|
||||||
add_le_add_left := @add_le_add_left,
|
add_le_add_left := @add_le_add_left,
|
||||||
le_of_add_le_add_left := @le_of_add_le_add_left,
|
le_of_add_le_add_left := @le_of_add_le_add_left,
|
||||||
zero_ne_one := ne.symm (succ_ne_zero zero),
|
zero_lt_one := zero_lt_succ 0,
|
||||||
mul_le_mul_of_nonneg_left := (take a b c H1 H2, mul_le_mul_left c H1),
|
mul_le_mul_of_nonneg_left := (take a b c H1 H2, mul_le_mul_left c H1),
|
||||||
mul_le_mul_of_nonneg_right := (take a b c H1 H2, mul_le_mul_right c H1),
|
mul_le_mul_of_nonneg_right := (take a b c H1 H2, mul_le_mul_right c H1),
|
||||||
mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left,
|
mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left,
|
||||||
|
@ -223,7 +223,6 @@ section migrate_algebra
|
||||||
end migrate_algebra
|
end migrate_algebra
|
||||||
|
|
||||||
theorem zero_le_one : 0 ≤ 1 := dec_trivial
|
theorem zero_le_one : 0 ≤ 1 := dec_trivial
|
||||||
theorem zero_lt_one : 0 < 1 := dec_trivial
|
|
||||||
|
|
||||||
/- properties specific to nat -/
|
/- properties specific to nat -/
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue