feat(hott): add lemma: cofiber of terminal morphism is suspension
This commit is contained in:
parent
7e02ea6cab
commit
31e2653e58
1 changed files with 22 additions and 2 deletions
|
@ -5,9 +5,9 @@ Authors: Jakob von Raumer
|
|||
|
||||
The Cofiber Type
|
||||
-/
|
||||
import hit.pointed_pushout function
|
||||
import hit.pointed_pushout function .susp
|
||||
|
||||
open eq pushout unit pointed is_trunc is_equiv
|
||||
open eq pushout unit pointed is_trunc is_equiv susp unit
|
||||
|
||||
definition cofiber {A B : Type} (f : A → B) := pushout (λ (a : A), ⋆) f
|
||||
|
||||
|
@ -37,4 +37,24 @@ end cofiber
|
|||
|
||||
definition Cofiber {A B : Type*} (f : A →* B) : Type* := Pushout (pconst A Unit) f
|
||||
|
||||
namespace cofiber
|
||||
variables (A : Type*)
|
||||
|
||||
definition cofiber_unit : Cofiber (pconst A Unit) ≃* Susp A :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ fconstructor, intro x, induction x, exact north, exact south, exact merid x,
|
||||
reflexivity },
|
||||
{ esimp, fapply adjointify,
|
||||
intro s, induction s, exact inl ⋆, exact inr ⋆, apply glue a,
|
||||
intro s, induction s, do 2 reflexivity, esimp,
|
||||
apply eq_pathover, refine _ ⬝hp !ap_id⁻¹, apply hdeg_square,
|
||||
refine !(ap_compose (pushout.elim _ _ _)) ⬝ _,
|
||||
refine ap _ !elim_merid ⬝ _, apply elim_glue,
|
||||
intro c, induction c with [n, s], induction n, reflexivity,
|
||||
induction s, reflexivity, esimp, apply eq_pathover, apply hdeg_square,
|
||||
refine _ ⬝ !ap_id⁻¹, refine !(ap_compose (pushout.elim _ _ _)) ⬝ _,
|
||||
refine ap _ !elim_glue ⬝ _, apply elim_merid },
|
||||
end
|
||||
|
||||
end cofiber
|
||||
|
|
Loading…
Reference in a new issue