feat(hott): add lemma: cofiber of terminal morphism is suspension

This commit is contained in:
Jakob von Raumer 2016-01-27 11:48:32 +00:00 committed by Leonardo de Moura
parent 7e02ea6cab
commit 31e2653e58

View file

@ -5,9 +5,9 @@ Authors: Jakob von Raumer
The Cofiber Type The Cofiber Type
-/ -/
import hit.pointed_pushout function import hit.pointed_pushout function .susp
open eq pushout unit pointed is_trunc is_equiv open eq pushout unit pointed is_trunc is_equiv susp unit
definition cofiber {A B : Type} (f : A → B) := pushout (λ (a : A), ⋆) f definition cofiber {A B : Type} (f : A → B) := pushout (λ (a : A), ⋆) f
@ -37,4 +37,24 @@ end cofiber
definition Cofiber {A B : Type*} (f : A →* B) : Type* := Pushout (pconst A Unit) f definition Cofiber {A B : Type*} (f : A →* B) : Type* := Pushout (pconst A Unit) f
namespace cofiber
variables (A : Type*)
definition cofiber_unit : Cofiber (pconst A Unit) ≃* Susp A :=
begin
fconstructor,
{ fconstructor, intro x, induction x, exact north, exact south, exact merid x,
reflexivity },
{ esimp, fapply adjointify,
intro s, induction s, exact inl ⋆, exact inr ⋆, apply glue a,
intro s, induction s, do 2 reflexivity, esimp,
apply eq_pathover, refine _ ⬝hp !ap_id⁻¹, apply hdeg_square,
refine !(ap_compose (pushout.elim _ _ _)) ⬝ _,
refine ap _ !elim_merid ⬝ _, apply elim_glue,
intro c, induction c with [n, s], induction n, reflexivity,
induction s, reflexivity, esimp, apply eq_pathover, apply hdeg_square,
refine _ ⬝ !ap_id⁻¹, refine !(ap_compose (pushout.elim _ _ _)) ⬝ _,
refine ap _ !elim_glue ⬝ _, apply elim_merid },
end
end cofiber