feat(EM): Prove some corollaries of Whitehead's principle, and prove that K(G,1) is unique.

Also reorder the arguments of is_equiv_compose
This commit is contained in:
Floris van Doorn 2016-06-23 23:38:35 +01:00 committed by Leonardo de Moura
parent fb81bcaeee
commit 3213b1b3b0
10 changed files with 214 additions and 25 deletions

View file

@ -69,14 +69,19 @@ namespace eq
exact loopn_pequiv_loopn k (pequiv_of_eq begin rewrite [trunc_index.zero_add] end)
end
open trunc_index
definition phomotopy_group_ptrunc_of_le [constructor] {k n : } (H : k ≤ n) (A : Type*) :
π*[k] (ptrunc n A) ≃* π*[k] A :=
calc
π*[k] (ptrunc n A) ≃* Ω[k] (ptrunc k (ptrunc n A))
: phomotopy_group_pequiv_loop_ptrunc k (ptrunc n A)
... ≃* Ω[k] (ptrunc k A)
: loopn_pequiv_loopn k (ptrunc_ptrunc_pequiv_left A (of_nat_le_of_nat H))
... ≃* π*[k] A : (phomotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
definition phomotopy_group_ptrunc [constructor] (k : ) (A : Type*) :
π*[k] (ptrunc k A) ≃* π*[k] A :=
calc
π*[k] (ptrunc k A) ≃* Ω[k] (ptrunc k (ptrunc k A))
: phomotopy_group_pequiv_loop_ptrunc k (ptrunc k A)
... ≃* Ω[k] (ptrunc k A)
: loopn_pequiv_loopn k (ptrunc_pequiv k (ptrunc k A) _)
... ≃* π*[k] A : (phomotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
phomotopy_group_ptrunc_of_le (le.refl k) A
theorem trivial_homotopy_of_is_set (A : Type*) [H : is_set A] (n : ) : πg[n+1] A ≃g G0 :=
begin
@ -149,7 +154,7 @@ namespace eq
definition is_equiv_phomotopy_group_functor_ap1 (n : ) {A B : Type*} (f : A →* B)
[is_equiv (π→*[n + 1] f)] : is_equiv (π→*[n] (Ω→ f)) :=
have is_equiv (pcast (phomotopy_group_succ_in B n) ∘* π→*[n + 1] f),
begin apply @(is_equiv_compose (π→*[n + 1] f) _) end,
from is_equiv_compose _ (π→*[n + 1] f),
have is_equiv (π→*[n] (Ω→ f) ∘ pcast (phomotopy_group_succ_in A n)),
from is_equiv.homotopy_closed _ (phomotopy_group_functor_succ_phomotopy_in n f),
is_equiv.cancel_right (pcast (phomotopy_group_succ_in A n)) _

View file

@ -243,3 +243,5 @@ section
end
end groupoid_quotient
export [unfold] groupoid_quotient

View file

@ -9,6 +9,7 @@ Eilenberg MacLane spaces
import hit.groupoid_quotient .hopf .freudenthal .homotopy_group
open algebra pointed nat eq category group algebra is_trunc iso pointed unit trunc equiv is_conn
function is_equiv
namespace EM
open groupoid_quotient
@ -150,7 +151,7 @@ namespace EM
{ exact abstract begin apply loop_pathover, apply square_of_eq,
refine !resp_mul⁻¹ ⬝ _ ⬝ !resp_mul,
exact ap pth !mul.comm end end}},
{ refine EM.prop_rec _ x', esimp, apply resp_mul},
{ refine EM.prop_rec _ x', apply resp_mul}
end
definition EM1_mul_one (G : CommGroup) (x : EM1 G) : EM1_mul x base = x :=
@ -235,6 +236,52 @@ namespace EM
{ apply is_trunc_EMadd1}
end
/- Uniqueness of K(G, 1) -/
definition pEM1_pmap [constructor] {G : Group} {X : Type*} (e : Ω X ≃ G)
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : pEM1 G →* X :=
begin
apply pmap.mk (EM1_map e r),
reflexivity,
end
definition loop_pEM1 [constructor] (G : Group) : Ω (pEM1 G) ≃* pType_of_Group G :=
pequiv_of_equiv (base_eq_base_equiv G) idp
definition loop_pEM1_pmap {G : Group} {X : Type*} (e : Ω X ≃ G)
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] :
Ω→(pEM1_pmap e r) ~ e⁻¹ᵉ ∘ base_eq_base_equiv G :=
begin
apply homotopy_of_inv_homotopy_pre (base_eq_base_equiv G),
intro g, exact !idp_con ⬝ !elim_pth
end
open trunc_index
definition pEM1_pequiv'.{u} {G : Group.{u}} {X : pType.{u}} (e : Ω X ≃ G)
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : pEM1 G ≃* X :=
begin
apply pequiv_of_pmap (pEM1_pmap e r),
apply whitehead_principle_pointed 1,
intro k, cases k with k,
{ apply @is_equiv_of_is_contr,
all_goals (esimp; exact _)},
{ cases k with k,
{ apply is_equiv_trunc_functor, esimp,
apply is_equiv.homotopy_closed, rotate 1,
{ symmetry, exact loop_pEM1_pmap _ _},
apply is_equiv_compose, apply to_is_equiv},
{ apply @is_equiv_of_is_contr,
do 2 exact trivial_homotopy_group_of_is_trunc _ (succ_lt_succ !zero_lt_succ)}}
end
definition pEM1_pequiv.{u} {G : Group.{u}} {X : pType.{u}} (e : π₁ X ≃g G)
[is_conn 0 X] [is_trunc 1 X] : pEM1 G ≃* X :=
begin
apply pEM1_pequiv' (!trunc_equiv⁻¹ᵉ ⬝e equiv_of_isomorphism e),
intro p q, esimp, exact respect_mul e (tr p) (tr q)
end
definition KG1_pequiv.{u} {X Y : pType.{u}} (e : π₁ X ≃g π₁ Y)
[is_conn 0 X] [is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y] : X ≃* Y :=
(pEM1_pequiv e)⁻¹ᵉ* ⬝e* pEM1_pequiv !isomorphism.refl
end EM

View file

@ -517,6 +517,19 @@ namespace chain_complex
{ apply is_surjective_of_trivial X, apply H1},
end
definition is_contr_of_is_embedding_of_is_surjective {N : succ_str} (X : chain_complex N) {n : N}
(H : is_exact_at X (S n)) [is_embedding (cc_to_fn X n)]
[H2 : is_surjective (cc_to_fn X (S (S (S n))))] : is_contr (X (S (S n))) :=
begin
apply is_contr.mk pt, intro x,
have p : cc_to_fn X n (cc_to_fn X (S n) x) = cc_to_fn X n pt,
from !cc_is_chain_complex ⬝ !respect_pt⁻¹,
have q : cc_to_fn X (S n) x = pt, from is_injective_of_is_embedding p,
induction H x q with y r,
induction H2 y with z s,
exact (cc_is_chain_complex X _ z)⁻¹ ⬝ ap (cc_to_fn X _) s ⬝ r
end
end
end chain_complex

View file

@ -145,6 +145,13 @@ namespace is_conn
exact is_conn_equiv_closed n (fiber.fiber_star_equiv A) _,
end
definition is_conn_fun_to_unit_of_is_conn [H : is_conn n A] :
is_conn_fun n (const A unit.star) :=
begin
intro u, induction u,
exact is_conn_equiv_closed n (fiber.fiber_star_equiv A)⁻¹ᵉ _,
end
-- now maps from unit
definition is_conn_of_map_from_unit (a₀ : A) (H : is_conn_fun n (const unit a₀))
: is_conn n .+1 A :=
@ -176,7 +183,7 @@ namespace is_conn
protected definition rec : is_equiv (λs : Πa : A, P a, s (Point A)) :=
@is_equiv_compose
(Πa : A, P a) (unit → P (Point A)) (P (Point A))
s x, s (Point A)) (λf, f unit.star)
f, f unit.star) (λs x, s (Point A))
(is_conn_fun.rec n (is_conn_fun_from_unit n A (Point A)) P)
(to_is_equiv (arrow_unit_left (P (Point A))))

View file

@ -7,20 +7,26 @@ Authors: Floris van Doorn, Clive Newstead
import .LES_of_homotopy_groups .sphere .complex_hopf
open eq is_trunc trunc_index pointed algebra trunc nat is_conn fiber pointed
open eq is_trunc trunc_index pointed algebra trunc nat is_conn fiber pointed unit
namespace is_trunc
-- Lemma 8.3.1
theorem trivial_homotopy_group_of_is_trunc (A : Type*) (n k : ) [is_trunc n A] (H : n ≤ k)
: is_contr (πg[k+1] A) :=
theorem trivial_homotopy_group_of_is_trunc (A : Type*) {n k : } [is_trunc n A] (H : n < k)
: is_contr (π[k] A) :=
begin
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
apply @is_trunc_of_le A n _,
apply trunc_index.le_of_succ_le_succ,
rewrite [succ_sub_two_succ k],
exact of_nat_le_of_nat H,
end
theorem trivial_ghomotopy_group_of_is_trunc (A : Type*) (n k : ) [is_trunc n A] (H : n ≤ k)
: is_contr (πg[k+1] A) :=
trivial_homotopy_group_of_is_trunc A (lt_succ_of_le H)
-- Lemma 8.3.2
theorem trivial_homotopy_group_of_is_conn (A : Type*) {k n : } (H : k ≤ n) [is_conn n A]
: is_contr (π[k] A) :=
@ -109,9 +115,9 @@ namespace is_trunc
(@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl)
/-
Theorem 8.8.3: Whitehead's principle
Theorem 8.8.3: Whitehead's principle and its corollaries
-/
definition whiteheads_principle (n : ℕ₋₂) {A B : Type}
definition whitehead_principle (n : ℕ₋₂) {A B : Type}
[HA : is_trunc n A] [HB : is_trunc n B] (f : A → B) (H' : is_equiv (trunc_functor 0 f))
(H : Πa k, is_equiv (π→*[k + 1] (pmap_of_map f a))) : is_equiv f :=
begin
@ -148,4 +154,93 @@ namespace is_trunc
apply is_equiv_of_is_equiv_ap1_of_is_equiv_trunc
end
definition whitehead_principle_pointed (n : ℕ₋₂) {A B : Type*}
[HA : is_trunc n A] [HB : is_trunc n B] [is_conn 0 A] (f : A →* B)
(H : Πk, is_equiv (π→*[k] f)) : is_equiv f :=
begin
apply whitehead_principle n, rexact H 0,
intro a k, revert a, apply is_conn.elim -1,
have is_equiv (π→*[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)
∘* π→*[k + 1] f ∘* π→*[k + 1] (pointed_eta_pequiv A)⁻¹ᵉ*),
begin
apply is_equiv_compose
(π→*[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)),
apply is_equiv_compose (π→*[k + 1] f),
all_goals apply is_equiv_homotopy_group_functor,
end,
refine @(is_equiv.homotopy_closed _) _ this _,
apply to_homotopy,
refine pwhisker_left _ !phomotopy_group_functor_compose⁻¹* ⬝* _,
refine !phomotopy_group_functor_compose⁻¹* ⬝* _,
apply phomotopy_group_functor_phomotopy, apply phomotopy_pmap_of_map
end
open pointed.ops
definition is_contr_of_trivial_homotopy (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn 0 A]
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
begin
fapply is_trunc_is_equiv_closed_rev, { exact λa, ⋆},
apply whitehead_principle n,
{ apply is_equiv_trunc_functor_of_is_conn_fun, apply is_conn_fun_to_unit_of_is_conn},
intro a k,
apply @is_equiv_of_is_contr,
refine trivial_homotopy_group_of_is_trunc _ !zero_lt_succ,
end
definition is_contr_of_trivial_homotopy_nat (n : ) (A : Type) [is_trunc n A] [is_conn 0 A]
(H : Πk a, k ≤ n → is_contr (π[k] (pointed.MK A a))) : is_contr A :=
begin
apply is_contr_of_trivial_homotopy n,
intro k a, apply @lt_ge_by_cases _ _ n k,
{ intro H', exact trivial_homotopy_group_of_is_trunc _ H'},
{ intro H', exact H k a H'}
end
definition is_contr_of_trivial_homotopy_pointed (n : ℕ₋₂) (A : Type*) [is_trunc n A]
(H : Πk, is_contr (π[k] A)) : is_contr A :=
begin
have is_conn 0 A, proof H 0 qed,
fapply is_contr_of_trivial_homotopy n A,
intro k, apply is_conn.elim -1,
cases A with A a, exact H k
end
definition is_contr_of_trivial_homotopy_nat_pointed (n : ) (A : Type*) [is_trunc n A]
(H : Πk, k ≤ n → is_contr (π[k] A)) : is_contr A :=
begin
have is_conn 0 A, proof H 0 !zero_le qed,
fapply is_contr_of_trivial_homotopy_nat n A,
intro k a H', revert a, apply is_conn.elim -1,
cases A with A a, exact H k H'
end
definition is_conn_fun_of_equiv_on_homotopy_groups.{u} (n : ) {A B : Type.{u}} (f : A → B)
[is_equiv (trunc_functor 0 f)]
(H1 : Πa k, k ≤ n → is_equiv (homotopy_group_functor k (pmap_of_map f a)))
(H2 : Πa, is_surjective (homotopy_group_functor (succ n) (pmap_of_map f a))) : is_conn_fun n f :=
have H2' : Πa k, k ≤ n → is_surjective (homotopy_group_functor (succ k) (pmap_of_map f a)),
begin
intro a k H, cases H with n' H',
{ apply H2},
{ apply is_surjective_of_is_equiv, apply H1, exact succ_le_succ H'}
end,
have H3 : Πa, is_contr (ptrunc n (pfiber (pmap_of_map f a))),
begin
intro a, apply is_contr_of_trivial_homotopy_nat_pointed n,
{ intro k H, apply is_trunc_equiv_closed_rev, exact phomotopy_group_ptrunc_of_le H _,
rexact @is_contr_of_is_embedding_of_is_surjective +3
(LES_of_homotopy_groups (pmap_of_map f a)) (k, 0)
(is_exact_LES_of_homotopy_groups _ _)
proof @(is_embedding_of_is_equiv _) (H1 a k H) qed
proof (H2' a k H) qed}
end,
show Πb, is_contr (trunc n (fiber f b)),
begin
intro b,
note p := right_inv (trunc_functor 0 f) (tr b), revert p,
induction (trunc_functor 0 f)⁻¹ (tr b), esimp, intro p,
induction !tr_eq_tr_equiv p with q,
rewrite -q, exact H3 a
end
end is_trunc

View file

@ -65,11 +65,11 @@ namespace sphere
_,
{ rewrite [▸*, LES_of_homotopy_groups_2 _ (n +[] 2)],
have H : 1 ≤[] n + 1, from !one_le_succ,
apply trivial_homotopy_group_of_is_trunc _ _ _ H},
apply trivial_ghomotopy_group_of_is_trunc _ _ _ H},
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
(LES_of_homotopy_groups_2 complex_phopf _) _,
have H : 1 ≤[] n + 2, from !one_le_succ,
apply trivial_homotopy_group_of_is_trunc _ _ _ H},
apply trivial_ghomotopy_group_of_is_trunc _ _ _ H},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}}},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}
end
@ -96,7 +96,7 @@ namespace sphere
theorem not_is_trunc_sphere (n : ) : ¬is_trunc n (S. (succ n)) :=
begin
intro H,
note H2 := trivial_homotopy_group_of_is_trunc (S. (succ n)) n n !le.refl,
note H2 := trivial_ghomotopy_group_of_is_trunc (S. (succ n)) n n !le.refl,
have H3 : is_contr , from is_trunc_equiv_closed _ (equiv_of_isomorphism (πnSn n)),
have H4 : (0 : ) ≠ (1 : ), from dec_star,
apply H4,

View file

@ -35,7 +35,7 @@ namespace is_equiv
postfix [parsing_only] `⁻¹ᶠ`:std.prec.max_plus := inv
section
variables {A B C : Type} (f : A → B) (g : B → C) {f' : A → B}
variables {A B C : Type} (g : B → C) (f : A → B) {f' : A → B}
-- The variant of mk' where f is explicit.
protected abbreviation mk [constructor] := @is_equiv.mk' A B f
@ -134,11 +134,11 @@ namespace is_equiv
-- The 2-out-of-3 properties
definition cancel_right (g : B → C) [Hgf : is_equiv (g ∘ f)] : (is_equiv g) :=
have Hfinv : is_equiv f⁻¹, from is_equiv_inv f,
@homotopy_closed _ _ _ _ (is_equiv_compose f⁻¹ (g ∘ f)) (λb, ap g (@right_inv _ _ f _ b))
@homotopy_closed _ _ _ _ (is_equiv_compose (g ∘ f) f⁻¹) (λb, ap g (@right_inv _ _ f _ b))
definition cancel_left (g : C → A) [Hgf : is_equiv (f ∘ g)] : (is_equiv g) :=
have Hfinv : is_equiv f⁻¹, from is_equiv_inv f,
@homotopy_closed _ _ _ _ (is_equiv_compose (f ∘ g) f⁻¹) (λa, left_inv f (g a))
@homotopy_closed _ _ _ _ (is_equiv_compose f⁻¹ (f ∘ g)) (λa, left_inv f (g a))
definition eq_of_fn_eq_fn' {x y : A} (q : f x = f y) : x = y :=
(left_inv f x)⁻¹ ⬝ ap f⁻¹ q ⬝ left_inv f y

View file

@ -171,11 +171,9 @@ namespace arrow
: is_equiv (inv_commute_of_commute f f' α β) :=
begin
unfold inv_commute_of_commute,
apply @is_equiv_compose _ _ _
(homotopy.symm ∘ (inv_homotopy_of_homotopy_pre f (f' ∘ α) β))
(inv_homotopy_of_homotopy_post f' (α ∘ f⁻¹) β),
{ apply @is_equiv_compose _ _ _
(inv_homotopy_of_homotopy_pre f (f' ∘ α) β) homotopy.symm,
apply @is_equiv_compose _ _ _ (inv_homotopy_of_homotopy_post f' (α ∘ f⁻¹) β)
(homotopy.symm ∘ (inv_homotopy_of_homotopy_pre f (f' ∘ α) β)),
{ apply @is_equiv_compose _ _ _ homotopy.symm (inv_homotopy_of_homotopy_pre f (f' ∘ α) β),
{ apply inv_homotopy_of_homotopy_pre.is_equiv },
{ apply pi.is_equiv_homotopy_symm }
},

View file

@ -29,6 +29,13 @@ namespace pointed
notation `Ω` := ploop_space
notation `Ω[`:95 n:0 `] `:0 A:95 := iterated_ploop_space n A
namespace ops
-- this is in a separate namespace because it caused type class inference to loop in some places
definition is_trunc_pointed_MK [instance] [priority 1100] (n : ℕ₋₂) {A : Type} (a : A)
[H : is_trunc n A] : is_trunc n (pointed.MK A a) :=
H
end ops
definition is_trunc_loop [instance] [priority 1100] (A : Type*)
(n : ℕ₋₂) [H : is_trunc (n.+1) A] : is_trunc n (Ω A) :=
!is_trunc_eq
@ -776,6 +783,21 @@ namespace pointed
pointed.MK A a ≃* pointed.MK A a' :=
pequiv_of_pmap (pmap_of_eq_pt p) !is_equiv_id
definition pointed_eta_pequiv [constructor] (A : Type*) : A ≃* pointed.MK A pt :=
pequiv.mk id !is_equiv_id idp
/- every pointed map is homotopic to one of the form `pmap_of_map _ _`, up to some
pointed equivalences -/
definition phomotopy_pmap_of_map {A B : Type*} (f : A →* B) :
(pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*) ∘* f ∘*
(pointed_eta_pequiv A)⁻¹ᵉ* ~* pmap_of_map f pt :=
begin
fapply phomotopy.mk,
{ reflexivity},
{ esimp [pequiv.trans, pequiv.symm],
exact !con.right_inv⁻¹ ⬝ ((!idp_con⁻¹ ⬝ !ap_id⁻¹) ◾ (!ap_id⁻¹⁻² ⬝ !idp_con⁻¹)), }
end
/- -- TODO
definition pmap_pequiv_pmap {A A' B B' : Type*} (f : A ≃* A') (g : B ≃* B') :
ppmap A B ≃* ppmap A' B' :=