feat(library/data/stream): prove take lemma for infinite streams
This commit is contained in:
parent
75901157a1
commit
32a2425e02
1 changed files with 22 additions and 7 deletions
|
@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Author: Leonardo de Moura
|
Author: Leonardo de Moura
|
||||||
-/
|
-/
|
||||||
import data.nat data.list algebra.function
|
import data.nat data.list algebra.function
|
||||||
open nat function
|
open nat function option
|
||||||
|
|
||||||
definition stream (A : Type) := nat → A
|
definition stream (A : Type) := nat → A
|
||||||
|
|
||||||
|
@ -334,21 +334,36 @@ theorem map_append (f : A → B) : ∀ (l : list A) (s : stream A), map f (l ++
|
||||||
| [] s := rfl
|
| [] s := rfl
|
||||||
| (a::l) s := by rewrite [cons_append, list.map_cons, map_cons, cons_append, map_append]
|
| (a::l) s := by rewrite [cons_append, list.map_cons, map_cons, cons_append, map_append]
|
||||||
|
|
||||||
definition to_list : nat → stream A → list A
|
definition approx : nat → stream A → list A
|
||||||
| 0 s := []
|
| 0 s := []
|
||||||
| (n+1) s := head s :: to_list n (tail s)
|
| (n+1) s := head s :: approx n (tail s)
|
||||||
|
|
||||||
theorem to_list_zero (s : stream A) : to_list 0 s = [] :=
|
theorem approx_zero (s : stream A) : approx 0 s = [] :=
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
theorem to_list_succ (n : nat) (s : stream A) : to_list (succ n) s = head s :: to_list n (tail s) :=
|
theorem approx_succ (n : nat) (s : stream A) : approx (succ n) s = head s :: approx n (tail s) :=
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
theorem append_to_list : ∀ (n : nat) (s : stream A), append (to_list n s) (nth_tail n s) = s :=
|
theorem nth_approx : ∀ (n : nat) (s : stream A), list.nth (approx (succ n) s) n = some (nth n s)
|
||||||
|
| 0 s := rfl
|
||||||
|
| (n+1) s := begin rewrite [approx_succ, add_one, list.nth_succ, nth_approx] end
|
||||||
|
|
||||||
|
theorem append_approx : ∀ (n : nat) (s : stream A), append (approx n s) (nth_tail n s) = s :=
|
||||||
begin
|
begin
|
||||||
intro n,
|
intro n,
|
||||||
induction n with n' ih,
|
induction n with n' ih,
|
||||||
{intro s, reflexivity},
|
{intro s, reflexivity},
|
||||||
{intro s, rewrite [to_list_succ, nth_tail_succ, cons_append, ih (tail s), stream.eta]}
|
{intro s, rewrite [approx_succ, nth_tail_succ, cons_append, ih (tail s), stream.eta]}
|
||||||
|
end
|
||||||
|
|
||||||
|
-- Take lemma reduces a proof of equality of infinite streams to an
|
||||||
|
-- induction over all their finite approximations.
|
||||||
|
theorem take_lemma (s₁ s₂ : stream A) : (∀ (n : nat), approx n s₁ = approx n s₂) → s₁ = s₂ :=
|
||||||
|
begin
|
||||||
|
intro h, apply stream.ext, intro n,
|
||||||
|
induction n with n ih,
|
||||||
|
{injection (h 1), assumption},
|
||||||
|
{have h₁ : some (nth (succ n) s₁) = some (nth (succ n) s₂), by rewrite [-*nth_approx, h (succ (succ n))],
|
||||||
|
injection h₁, assumption}
|
||||||
end
|
end
|
||||||
end stream
|
end stream
|
||||||
|
|
Loading…
Reference in a new issue