feat(library/data/stream): prove take lemma for infinite streams

This commit is contained in:
Leonardo de Moura 2015-05-23 23:01:45 -07:00
parent 75901157a1
commit 32a2425e02

View file

@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura Author: Leonardo de Moura
-/ -/
import data.nat data.list algebra.function import data.nat data.list algebra.function
open nat function open nat function option
definition stream (A : Type) := nat → A definition stream (A : Type) := nat → A
@ -334,21 +334,36 @@ theorem map_append (f : A → B) : ∀ (l : list A) (s : stream A), map f (l ++
| [] s := rfl | [] s := rfl
| (a::l) s := by rewrite [cons_append, list.map_cons, map_cons, cons_append, map_append] | (a::l) s := by rewrite [cons_append, list.map_cons, map_cons, cons_append, map_append]
definition to_list : nat → stream A → list A definition approx : nat → stream A → list A
| 0 s := [] | 0 s := []
| (n+1) s := head s :: to_list n (tail s) | (n+1) s := head s :: approx n (tail s)
theorem to_list_zero (s : stream A) : to_list 0 s = [] := theorem approx_zero (s : stream A) : approx 0 s = [] :=
rfl rfl
theorem to_list_succ (n : nat) (s : stream A) : to_list (succ n) s = head s :: to_list n (tail s) := theorem approx_succ (n : nat) (s : stream A) : approx (succ n) s = head s :: approx n (tail s) :=
rfl rfl
theorem append_to_list : ∀ (n : nat) (s : stream A), append (to_list n s) (nth_tail n s) = s := theorem nth_approx : ∀ (n : nat) (s : stream A), list.nth (approx (succ n) s) n = some (nth n s)
| 0 s := rfl
| (n+1) s := begin rewrite [approx_succ, add_one, list.nth_succ, nth_approx] end
theorem append_approx : ∀ (n : nat) (s : stream A), append (approx n s) (nth_tail n s) = s :=
begin begin
intro n, intro n,
induction n with n' ih, induction n with n' ih,
{intro s, reflexivity}, {intro s, reflexivity},
{intro s, rewrite [to_list_succ, nth_tail_succ, cons_append, ih (tail s), stream.eta]} {intro s, rewrite [approx_succ, nth_tail_succ, cons_append, ih (tail s), stream.eta]}
end
-- Take lemma reduces a proof of equality of infinite streams to an
-- induction over all their finite approximations.
theorem take_lemma (s₁ s₂ : stream A) : (∀ (n : nat), approx n s₁ = approx n s₂) → s₁ = s₂ :=
begin
intro h, apply stream.ext, intro n,
induction n with n ih,
{injection (h 1), assumption},
{have h₁ : some (nth (succ n) s₁) = some (nth (succ n) s₂), by rewrite [-*nth_approx, h (succ (succ n))],
injection h₁, assumption}
end end
end stream end stream