doc(library/data/nat/examples): add examples

This commit is contained in:
Leonardo de Moura 2015-07-09 21:56:48 -04:00
parent a9515ac7a4
commit 32cc2e917b
2 changed files with 85 additions and 0 deletions

View file

@ -0,0 +1,52 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
import data.nat
open nat
definition fib : nat → nat
| 0 := 1
| 1 := 1
| (n+2) := fib (n+1) + fib n
private definition fib_fast_aux : nat → (nat × nat)
| 0 := (0, 1)
| 1 := (1, 1)
| (n+2) :=
match fib_fast_aux (n+1) with
| (fn, fn1) := (fn1, fn1 + fn)
end
open prod.ops -- Get .1 .2 notation for pairs
definition fib_fast (n : nat) := (fib_fast_aux n).2
-- We now prove that fib_fast and fib are equal
lemma fib_fast_aux_succ_succ : ∀ n, fib_fast_aux (succ (succ n)) = match fib_fast_aux (succ n) with | (fn, fn1) := (fn1, fn1 + fn) end :=
λ n, rfl
lemma fib_fast_aux_lemma : ∀ n, (fib_fast_aux (succ n)).1 = (fib_fast_aux n).2
| 0 := rfl
| 1 := rfl
| (succ (succ n)) :=
begin
rewrite [fib_fast_aux_succ_succ],
rewrite [-prod.eta (fib_fast_aux (succ (succ n)))],
end
theorem fib_eq_fib_fast : ∀ n, fib n = fib_fast n
| 0 := rfl
| 1 := rfl
| (n+2) :=
begin
have feq : fib n = fib_fast n, from fib_eq_fib_fast n,
have f1eq : fib (succ n) = fib_fast (succ n), from fib_eq_fib_fast (succ n),
unfold [fib, fib_fast, fib_fast_aux],
rewrite [-prod.eta (fib_fast_aux (succ n))], esimp,
fold fib_fast (succ n), rewrite -f1eq,
rewrite fib_fast_aux_lemma,
fold fib_fast n, rewrite -feq,
end

View file

@ -0,0 +1,33 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
import data.nat
open nat
definition partial_sum : nat → nat
| 0 := 0
| (succ n) := succ n + partial_sum n
example : partial_sum 5 = 15 :=
rfl
example : partial_sum 6 = 21 :=
rfl
lemma two_mul_partial_sum_eq : ∀ n, 2 * partial_sum n = (succ n) * n
| 0 := by reflexivity
| (succ n) := calc
2 * (succ n + partial_sum n) = 2 * succ n + 2 * partial_sum n : mul.left_distrib
... = 2 * succ n + succ n * n : two_mul_partial_sum_eq
... = 2 * succ n + n * succ n : mul.comm
... = (2 + n) * succ n : mul.right_distrib
... = (n + 2) * succ n : add.comm
... = (succ (succ n)) * succ n : rfl
theorem partial_sum_eq : ∀ n, partial_sum n = ((n + 1) * n) div 2 :=
take n,
assert h₁ : (2 * partial_sum n) div 2 = ((succ n) * n) div 2, by rewrite two_mul_partial_sum_eq,
assert h₂ : 2 > 0, from dec_trivial,
by rewrite [mul_div_cancel_left _ h₂ at h₁]; exact h₁