feat(library/simplifier): improve contextual simplifications
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
d6692264e8
commit
33193e1ab3
7 changed files with 58 additions and 3 deletions
|
@ -339,6 +339,12 @@ theorem not_true : ¬ true ↔ false
|
||||||
theorem not_false : ¬ false ↔ true
|
theorem not_false : ¬ false ↔ true
|
||||||
:= trivial
|
:= trivial
|
||||||
|
|
||||||
|
theorem not_neq {A : TypeU} (a b : A) : ¬ (a ≠ b) ↔ a = b
|
||||||
|
:= not_not_eq (a = b)
|
||||||
|
|
||||||
|
theorem not_neq_elim {A : TypeU} {a b : A} (H : ¬ (a ≠ b)) : a = b
|
||||||
|
:= (not_neq a b) ◂ H
|
||||||
|
|
||||||
theorem not_and (a b : Bool) : ¬ (a ∧ b) ↔ ¬ a ∨ ¬ b
|
theorem not_and (a b : Bool) : ¬ (a ∧ b) ↔ ¬ a ∨ ¬ b
|
||||||
:= case (λ x, ¬ (x ∧ b) ↔ ¬ x ∨ ¬ b)
|
:= case (λ x, ¬ (x ∧ b) ↔ ¬ x ∨ ¬ b)
|
||||||
(case (λ y, ¬ (true ∧ y) ↔ ¬ true ∨ ¬ y) trivial trivial b)
|
(case (λ y, ¬ (true ∧ y) ↔ ¬ true ∨ ¬ y) trivial trivial b)
|
||||||
|
|
Binary file not shown.
|
@ -97,6 +97,8 @@ MK_CONSTANT(imp_falser_fn, name("imp_falser"));
|
||||||
MK_CONSTANT(imp_falsel_fn, name("imp_falsel"));
|
MK_CONSTANT(imp_falsel_fn, name("imp_falsel"));
|
||||||
MK_CONSTANT(not_true, name("not_true"));
|
MK_CONSTANT(not_true, name("not_true"));
|
||||||
MK_CONSTANT(not_false, name("not_false"));
|
MK_CONSTANT(not_false, name("not_false"));
|
||||||
|
MK_CONSTANT(not_neq_fn, name("not_neq"));
|
||||||
|
MK_CONSTANT(not_neq_elim_fn, name("not_neq_elim"));
|
||||||
MK_CONSTANT(not_and_fn, name("not_and"));
|
MK_CONSTANT(not_and_fn, name("not_and"));
|
||||||
MK_CONSTANT(not_and_elim_fn, name("not_and_elim"));
|
MK_CONSTANT(not_and_elim_fn, name("not_and_elim"));
|
||||||
MK_CONSTANT(not_or_fn, name("not_or"));
|
MK_CONSTANT(not_or_fn, name("not_or"));
|
||||||
|
|
|
@ -282,6 +282,12 @@ expr mk_not_true();
|
||||||
bool is_not_true(expr const & e);
|
bool is_not_true(expr const & e);
|
||||||
expr mk_not_false();
|
expr mk_not_false();
|
||||||
bool is_not_false(expr const & e);
|
bool is_not_false(expr const & e);
|
||||||
|
expr mk_not_neq_fn();
|
||||||
|
bool is_not_neq_fn(expr const & e);
|
||||||
|
inline expr mk_not_neq_th(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_not_neq_fn(), e1, e2, e3}); }
|
||||||
|
expr mk_not_neq_elim_fn();
|
||||||
|
bool is_not_neq_elim_fn(expr const & e);
|
||||||
|
inline expr mk_not_neq_elim_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({mk_not_neq_elim_fn(), e1, e2, e3, e4}); }
|
||||||
expr mk_not_and_fn();
|
expr mk_not_and_fn();
|
||||||
bool is_not_and_fn(expr const & e);
|
bool is_not_and_fn(expr const & e);
|
||||||
inline expr mk_not_and_th(expr const & e1, expr const & e2) { return mk_app({mk_not_and_fn(), e1, e2}); }
|
inline expr mk_not_and_th(expr const & e1, expr const & e2) { return mk_app({mk_not_and_fn(), e1, e2}); }
|
||||||
|
|
|
@ -56,9 +56,16 @@ class to_ceqs_fn {
|
||||||
return mk_singleton(new_e, new_H);
|
return mk_singleton(new_e, new_H);
|
||||||
} else if (is_not(e)) {
|
} else if (is_not(e)) {
|
||||||
expr a = arg(e, 1);
|
expr a = arg(e, 1);
|
||||||
expr new_e = mk_iff(a, False);
|
if (is_not(a)) {
|
||||||
expr new_H = mk_eqf_intro_th(a, H);
|
return apply(arg(a, 1), mk_not_not_elim_th(arg(a, 1), H));
|
||||||
return mk_singleton(new_e, new_H);
|
} else if (is_neq(a)) {
|
||||||
|
return mk_singleton(update_app(a, 0, mk_eq_fn()),
|
||||||
|
mk_not_neq_elim_th(arg(a, 1), arg(a, 2), arg(a, 3), H));
|
||||||
|
} else {
|
||||||
|
expr new_e = mk_iff(a, False);
|
||||||
|
expr new_H = mk_eqf_intro_th(a, H);
|
||||||
|
return mk_singleton(new_e, new_H);
|
||||||
|
}
|
||||||
} else if (is_and(e)) {
|
} else if (is_and(e)) {
|
||||||
expr a1 = arg(e, 1);
|
expr a1 = arg(e, 1);
|
||||||
expr a2 = arg(e, 2);
|
expr a2 = arg(e, 2);
|
||||||
|
|
16
tests/lean/simp14.lean
Normal file
16
tests/lean/simp14.lean
Normal file
|
@ -0,0 +1,16 @@
|
||||||
|
rewrite_set simple
|
||||||
|
add_rewrite and_truer and_truel and_falser and_falsel or_falsel : simple
|
||||||
|
(*
|
||||||
|
add_congr_theorem("simple", "and_congr")
|
||||||
|
add_congr_theorem("simple", "or_congr")
|
||||||
|
*)
|
||||||
|
|
||||||
|
variables a b c : Nat
|
||||||
|
|
||||||
|
(*
|
||||||
|
local t = parse_lean([[a = 1 ∧ (¬ b = 0 ∨ c ≠ 0 ∨ b + c > a)]])
|
||||||
|
local s, pr = simplify(t, "simple")
|
||||||
|
print(s)
|
||||||
|
print(pr)
|
||||||
|
print(get_environment():type_check(pr))
|
||||||
|
*)
|
18
tests/lean/simp14.lean.expected.out
Normal file
18
tests/lean/simp14.lean.expected.out
Normal file
|
@ -0,0 +1,18 @@
|
||||||
|
Set: pp::colors
|
||||||
|
Set: pp::unicode
|
||||||
|
Assumed: a
|
||||||
|
Assumed: b
|
||||||
|
Assumed: c
|
||||||
|
a = 1 ∧ (¬ b = 0 ∨ c ≠ 0)
|
||||||
|
and_congr
|
||||||
|
(refl (a = 1))
|
||||||
|
(λ C::1 : a = 1,
|
||||||
|
or_congr (refl (¬ b = 0))
|
||||||
|
(λ C::2 : ¬ ¬ b = 0,
|
||||||
|
trans (or_congr (refl (c ≠ 0))
|
||||||
|
(λ C::3 : ¬ c ≠ 0,
|
||||||
|
congr (congr2 Nat::gt
|
||||||
|
(congr (congr2 Nat::add (not_not_elim C::2)) (not_neq_elim C::3)))
|
||||||
|
C::1))
|
||||||
|
(or_falsel (c ≠ 0))))
|
||||||
|
a = 1 ∧ (¬ b = 0 ∨ c ≠ 0 ∨ b + c > a) ↔ a = 1 ∧ (¬ b = 0 ∨ c ≠ 0)
|
Loading…
Reference in a new issue