feat(pointed): make the naming in the pointed library more consistent.
Also start on a naming conventions file
This commit is contained in:
parent
554abe88c2
commit
341a53b880
13 changed files with 403 additions and 403 deletions
|
@ -13,21 +13,17 @@ open nat eq pointed trunc is_trunc algebra group function equiv unit is_equiv
|
|||
-- TODO: consistently make n an argument before A
|
||||
namespace eq
|
||||
|
||||
definition phomotopy_group [reducible] [constructor] (n : ℕ) (A : Type*) : Set* :=
|
||||
definition homotopy_group [reducible] [constructor] (n : ℕ) (A : Type*) : Set* :=
|
||||
ptrunc 0 (Ω[n] A)
|
||||
|
||||
definition homotopy_group [reducible] (n : ℕ) (A : Type*) : Type :=
|
||||
phomotopy_group n A
|
||||
|
||||
notation `π*[`:95 n:0 `]`:0 := phomotopy_group n
|
||||
notation `π[`:95 n:0 `]`:0 := homotopy_group n
|
||||
notation `π[`:95 n:0 `]`:0 := homotopy_group n
|
||||
|
||||
definition group_homotopy_group [instance] [constructor] [reducible] (n : ℕ) (A : Type*)
|
||||
: group (π[succ n] A) :=
|
||||
trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv
|
||||
|
||||
definition group_homotopy_group2 [instance] (k : ℕ) (A : Type*) :
|
||||
group (carrier (ptrunctype.to_pType (π*[k + 1] A))) :=
|
||||
group (carrier (ptrunctype.to_pType (π[k + 1] A))) :=
|
||||
group_homotopy_group k A
|
||||
|
||||
definition comm_group_homotopy_group [constructor] [reducible] (n : ℕ) (A : Type*)
|
||||
|
@ -58,30 +54,30 @@ namespace eq
|
|||
: tr p *[π[succ n] A] tr q = tr (p ⬝ q) :=
|
||||
idp
|
||||
|
||||
definition phomotopy_group_pequiv [constructor] (n : ℕ) {A B : Type*} (H : A ≃* B)
|
||||
: π*[n] A ≃* π*[n] B :=
|
||||
definition homotopy_group_pequiv [constructor] (n : ℕ) {A B : Type*} (H : A ≃* B)
|
||||
: π[n] A ≃* π[n] B :=
|
||||
ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn n H)
|
||||
|
||||
definition phomotopy_group_pequiv_loop_ptrunc [constructor] (k : ℕ) (A : Type*) :
|
||||
π*[k] A ≃* Ω[k] (ptrunc k A) :=
|
||||
definition homotopy_group_pequiv_loop_ptrunc [constructor] (k : ℕ) (A : Type*) :
|
||||
π[k] A ≃* Ω[k] (ptrunc k A) :=
|
||||
begin
|
||||
refine !iterated_loop_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
|
||||
refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
|
||||
exact loopn_pequiv_loopn k (pequiv_of_eq begin rewrite [trunc_index.zero_add] end)
|
||||
end
|
||||
|
||||
open trunc_index
|
||||
definition phomotopy_group_ptrunc_of_le [constructor] {k n : ℕ} (H : k ≤ n) (A : Type*) :
|
||||
π*[k] (ptrunc n A) ≃* π*[k] A :=
|
||||
definition homotopy_group_ptrunc_of_le [constructor] {k n : ℕ} (H : k ≤ n) (A : Type*) :
|
||||
π[k] (ptrunc n A) ≃* π[k] A :=
|
||||
calc
|
||||
π*[k] (ptrunc n A) ≃* Ω[k] (ptrunc k (ptrunc n A))
|
||||
: phomotopy_group_pequiv_loop_ptrunc k (ptrunc n A)
|
||||
π[k] (ptrunc n A) ≃* Ω[k] (ptrunc k (ptrunc n A))
|
||||
: homotopy_group_pequiv_loop_ptrunc k (ptrunc n A)
|
||||
... ≃* Ω[k] (ptrunc k A)
|
||||
: loopn_pequiv_loopn k (ptrunc_ptrunc_pequiv_left A (of_nat_le_of_nat H))
|
||||
... ≃* π*[k] A : (phomotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
|
||||
... ≃* π[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
|
||||
|
||||
definition phomotopy_group_ptrunc [constructor] (k : ℕ) (A : Type*) :
|
||||
π*[k] (ptrunc k A) ≃* π*[k] A :=
|
||||
phomotopy_group_ptrunc_of_le (le.refl k) A
|
||||
definition homotopy_group_ptrunc [constructor] (k : ℕ) (A : Type*) :
|
||||
π[k] (ptrunc k A) ≃* π[k] A :=
|
||||
homotopy_group_ptrunc_of_le (le.refl k) A
|
||||
|
||||
theorem trivial_homotopy_of_is_set (A : Type*) [H : is_set A] (n : ℕ) : πg[n+1] A ≃g G0 :=
|
||||
begin
|
||||
|
@ -91,67 +87,63 @@ namespace eq
|
|||
apply is_trunc_succ_succ_of_is_set
|
||||
end
|
||||
|
||||
definition phomotopy_group_succ_out (A : Type*) (n : ℕ) : π*[n + 1] A = π₁ Ω[n] A := idp
|
||||
definition homotopy_group_succ_out (A : Type*) (n : ℕ) : π[n + 1] A = π₁ (Ω[n] A) := idp
|
||||
|
||||
definition phomotopy_group_succ_in (A : Type*) (n : ℕ) : π*[n + 1] A ≃* π*[n] (Ω A) :=
|
||||
ptrunc_pequiv_ptrunc 0 (loop_space_succ_in A n)
|
||||
definition homotopy_group_succ_in (A : Type*) (n : ℕ) : π[n + 1] A ≃* π[n] (Ω A) :=
|
||||
ptrunc_pequiv_ptrunc 0 (loopn_succ_in A n)
|
||||
|
||||
definition ghomotopy_group_succ_out (A : Type*) (n : ℕ) : πg[n +1] A = π₁ Ω[n] A := idp
|
||||
definition ghomotopy_group_succ_out (A : Type*) (n : ℕ) : πg[n +1] A = π₁ (Ω[n] A) := idp
|
||||
|
||||
definition phomotopy_group_succ_in_con {A : Type*} {n : ℕ} (g h : πg[succ n +1] A) :
|
||||
phomotopy_group_succ_in A (succ n) (g * h) =
|
||||
phomotopy_group_succ_in A (succ n) g * phomotopy_group_succ_in A (succ n) h :=
|
||||
definition homotopy_group_succ_in_con {A : Type*} {n : ℕ} (g h : πg[succ n +1] A) :
|
||||
homotopy_group_succ_in A (succ n) (g * h) =
|
||||
homotopy_group_succ_in A (succ n) g * homotopy_group_succ_in A (succ n) h :=
|
||||
begin
|
||||
induction g with p, induction h with q, esimp,
|
||||
apply ap tr, apply loop_space_succ_in_con
|
||||
apply ap tr, apply loopn_succ_in_con
|
||||
end
|
||||
|
||||
definition ghomotopy_group_succ_in (A : Type*) (n : ℕ) : πg[succ n +1] A ≃g πg[n +1] (Ω A) :=
|
||||
begin
|
||||
fapply isomorphism_of_equiv,
|
||||
{ exact phomotopy_group_succ_in A (succ n)},
|
||||
{ exact phomotopy_group_succ_in_con},
|
||||
{ exact homotopy_group_succ_in A (succ n)},
|
||||
{ exact homotopy_group_succ_in_con},
|
||||
end
|
||||
|
||||
definition phomotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B)
|
||||
: π*[n] A →* π*[n] B :=
|
||||
definition homotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B)
|
||||
: π[n] A →* π[n] B :=
|
||||
ptrunc_functor 0 (apn n f)
|
||||
|
||||
definition homotopy_group_functor (n : ℕ) {A B : Type*} (f : A →* B) : π[n] A → π[n] B :=
|
||||
phomotopy_group_functor n f
|
||||
notation `π→[`:95 n:0 `]`:0 := homotopy_group_functor n
|
||||
|
||||
notation `π→*[`:95 n:0 `]`:0 := phomotopy_group_functor n
|
||||
notation `π→[`:95 n:0 `]`:0 := homotopy_group_functor n
|
||||
|
||||
definition phomotopy_group_functor_phomotopy [constructor] (n : ℕ) {A B : Type*} {f g : A →* B}
|
||||
(p : f ~* g) : π→*[n] f ~* π→*[n] g :=
|
||||
definition homotopy_group_functor_phomotopy [constructor] (n : ℕ) {A B : Type*} {f g : A →* B}
|
||||
(p : f ~* g) : π→[n] f ~* π→[n] g :=
|
||||
ptrunc_functor_phomotopy 0 (apn_phomotopy n p)
|
||||
|
||||
definition phomotopy_group_functor_compose [constructor] (n : ℕ) {A B C : Type*} (g : B →* C)
|
||||
(f : A →* B) : π→*[n] (g ∘* f) ~* π→*[n] g ∘* π→*[n] f :=
|
||||
ptrunc_functor_phomotopy 0 !apn_compose ⬝* !ptrunc_functor_pcompose
|
||||
definition homotopy_group_functor_compose [constructor] (n : ℕ) {A B C : Type*} (g : B →* C)
|
||||
(f : A →* B) : π→[n] (g ∘* f) ~* π→[n] g ∘* π→[n] f :=
|
||||
ptrunc_functor_phomotopy 0 !apn_pcompose ⬝* !ptrunc_functor_pcompose
|
||||
|
||||
definition is_equiv_homotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B)
|
||||
[is_equiv f] : is_equiv (π→[n] f) :=
|
||||
@(is_equiv_trunc_functor 0 _) !is_equiv_apn
|
||||
|
||||
definition phomotopy_group_functor_succ_phomotopy_in (n : ℕ) {A B : Type*} (f : A →* B) :
|
||||
phomotopy_group_succ_in B n ∘* π→*[n + 1] f ~*
|
||||
π→*[n] (Ω→ f) ∘* phomotopy_group_succ_in A n :=
|
||||
definition homotopy_group_functor_succ_phomotopy_in (n : ℕ) {A B : Type*} (f : A →* B) :
|
||||
homotopy_group_succ_in B n ∘* π→[n + 1] f ~*
|
||||
π→[n] (Ω→ f) ∘* homotopy_group_succ_in A n :=
|
||||
begin
|
||||
refine !ptrunc_functor_pcompose⁻¹* ⬝* _ ⬝* !ptrunc_functor_pcompose,
|
||||
exact ptrunc_functor_phomotopy 0 (apn_succ_phomotopy_in n f)
|
||||
end
|
||||
|
||||
definition is_equiv_phomotopy_group_functor_ap1 (n : ℕ) {A B : Type*} (f : A →* B)
|
||||
[is_equiv (π→*[n + 1] f)] : is_equiv (π→*[n] (Ω→ f)) :=
|
||||
have is_equiv (phomotopy_group_succ_in B n ∘* π→*[n + 1] f),
|
||||
from is_equiv_compose _ (π→*[n + 1] f),
|
||||
have is_equiv (π→*[n] (Ω→ f) ∘ phomotopy_group_succ_in A n),
|
||||
from is_equiv.homotopy_closed _ (phomotopy_group_functor_succ_phomotopy_in n f),
|
||||
is_equiv.cancel_right (phomotopy_group_succ_in A n) _
|
||||
definition is_equiv_homotopy_group_functor_ap1 (n : ℕ) {A B : Type*} (f : A →* B)
|
||||
[is_equiv (π→[n + 1] f)] : is_equiv (π→[n] (Ω→ f)) :=
|
||||
have is_equiv (homotopy_group_succ_in B n ∘* π→[n + 1] f),
|
||||
from is_equiv_compose _ (π→[n + 1] f),
|
||||
have is_equiv (π→[n] (Ω→ f) ∘ homotopy_group_succ_in A n),
|
||||
from is_equiv.homotopy_closed _ (homotopy_group_functor_succ_phomotopy_in n f),
|
||||
is_equiv.cancel_right (homotopy_group_succ_in A n) _
|
||||
|
||||
definition tinverse [constructor] {X : Type*} : π*[1] X →* π*[1] X :=
|
||||
definition tinverse [constructor] {X : Type*} : π[1] X →* π[1] X :=
|
||||
ptrunc_functor 0 pinverse
|
||||
|
||||
definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) :=
|
||||
|
@ -165,7 +157,7 @@ namespace eq
|
|||
{ reflexivity}
|
||||
end
|
||||
|
||||
definition phomotopy_group_functor_mul [constructor] (n : ℕ) {A B : Type*} (g : A →* B)
|
||||
definition homotopy_group_functor_mul [constructor] (n : ℕ) {A B : Type*} (g : A →* B)
|
||||
(p q : πg[n+1] A) :
|
||||
(π→[n + 1] g) (p *[πg[n+1] A] q) = (π→[n + 1] g) p *[πg[n+1] B] (π→[n + 1] g) q :=
|
||||
begin
|
||||
|
@ -179,8 +171,8 @@ namespace eq
|
|||
: πg[n+1] A →g πg[n+1] B :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ exact phomotopy_group_functor (n+1) f},
|
||||
{ apply phomotopy_group_functor_mul}
|
||||
{ exact homotopy_group_functor (n+1) f},
|
||||
{ apply homotopy_group_functor_mul}
|
||||
end
|
||||
|
||||
definition homotopy_group_isomorphism_of_pequiv [constructor] (n : ℕ) {A B : Type*} (f : A ≃* B)
|
||||
|
@ -190,63 +182,63 @@ namespace eq
|
|||
esimp, apply is_equiv_trunc_functor, apply is_equiv_apn,
|
||||
end
|
||||
|
||||
definition homotopy_group_add (A : Type*) (n m : ℕ) : πg[n+m +1] A ≃g πg[n +1] Ω[m] A :=
|
||||
definition homotopy_group_add (A : Type*) (n m : ℕ) : πg[n+m +1] A ≃g πg[n +1] (Ω[m] A) :=
|
||||
begin
|
||||
revert A, induction m with m IH: intro A,
|
||||
{ reflexivity},
|
||||
{ esimp [iterated_ploop_space, nat.add], refine !ghomotopy_group_succ_in ⬝g _, refine !IH ⬝g _,
|
||||
{ esimp [loopn, nat.add], refine !ghomotopy_group_succ_in ⬝g _, refine !IH ⬝g _,
|
||||
apply homotopy_group_isomorphism_of_pequiv,
|
||||
exact !loop_space_succ_in⁻¹ᵉ*}
|
||||
exact !loopn_succ_in⁻¹ᵉ*}
|
||||
end
|
||||
|
||||
theorem trivial_homotopy_add_of_is_set_loop_space {A : Type*} {n : ℕ} (m : ℕ)
|
||||
theorem trivial_homotopy_add_of_is_set_loopn {A : Type*} {n : ℕ} (m : ℕ)
|
||||
(H : is_set (Ω[n] A)) : πg[m+n+1] A ≃g G0 :=
|
||||
!homotopy_group_add ⬝g !trivial_homotopy_of_is_set
|
||||
|
||||
theorem trivial_homotopy_le_of_is_set_loop_space {A : Type*} {n : ℕ} (m : ℕ) (H1 : n ≤ m)
|
||||
theorem trivial_homotopy_le_of_is_set_loopn {A : Type*} {n : ℕ} (m : ℕ) (H1 : n ≤ m)
|
||||
(H2 : is_set (Ω[n] A)) : πg[m+1] A ≃g G0 :=
|
||||
obtain (k : ℕ) (p : n + k = m), from le.elim H1,
|
||||
isomorphism_of_eq (ap (λx, πg[x+1] A) (p⁻¹ ⬝ add.comm n k)) ⬝g
|
||||
trivial_homotopy_add_of_is_set_loop_space k H2
|
||||
trivial_homotopy_add_of_is_set_loopn k H2
|
||||
|
||||
definition phomotopy_group_pequiv_loop_ptrunc_con {k : ℕ} {A : Type*} (p q : πg[k +1] A) :
|
||||
phomotopy_group_pequiv_loop_ptrunc (succ k) A (p * q) =
|
||||
phomotopy_group_pequiv_loop_ptrunc (succ k) A p ⬝
|
||||
phomotopy_group_pequiv_loop_ptrunc (succ k) A q :=
|
||||
definition homotopy_group_pequiv_loop_ptrunc_con {k : ℕ} {A : Type*} (p q : πg[k +1] A) :
|
||||
homotopy_group_pequiv_loop_ptrunc (succ k) A (p * q) =
|
||||
homotopy_group_pequiv_loop_ptrunc (succ k) A p ⬝
|
||||
homotopy_group_pequiv_loop_ptrunc (succ k) A q :=
|
||||
begin
|
||||
refine _ ⬝ !loopn_pequiv_loopn_con,
|
||||
exact ap (loopn_pequiv_loopn _ _) !iterated_loop_ptrunc_pequiv_inv_con
|
||||
exact ap (loopn_pequiv_loopn _ _) !loopn_ptrunc_pequiv_inv_con
|
||||
end
|
||||
|
||||
definition phomotopy_group_pequiv_loop_ptrunc_inv_con {k : ℕ} {A : Type*}
|
||||
definition homotopy_group_pequiv_loop_ptrunc_inv_con {k : ℕ} {A : Type*}
|
||||
(p q : Ω[succ k] (ptrunc (succ k) A)) :
|
||||
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* (p ⬝ q) =
|
||||
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* p *
|
||||
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* q :=
|
||||
inv_preserve_binary (phomotopy_group_pequiv_loop_ptrunc (succ k) A) mul concat
|
||||
(@phomotopy_group_pequiv_loop_ptrunc_con k A) p q
|
||||
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* (p ⬝ q) =
|
||||
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* p *
|
||||
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* q :=
|
||||
inv_preserve_binary (homotopy_group_pequiv_loop_ptrunc (succ k) A) mul concat
|
||||
(@homotopy_group_pequiv_loop_ptrunc_con k A) p q
|
||||
|
||||
definition ghomotopy_group_ptrunc [constructor] (k : ℕ) (A : Type*) :
|
||||
πg[k+1] (ptrunc (k+1) A) ≃g πg[k+1] A :=
|
||||
begin
|
||||
fapply isomorphism_of_equiv,
|
||||
{ exact phomotopy_group_ptrunc (k+1) A},
|
||||
{ exact homotopy_group_ptrunc (k+1) A},
|
||||
{ intro g₁ g₂, esimp,
|
||||
refine _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_inv_con,
|
||||
apply ap ((phomotopy_group_pequiv_loop_ptrunc (k+1) A)⁻¹ᵉ*),
|
||||
refine _ ⬝ !homotopy_group_pequiv_loop_ptrunc_inv_con,
|
||||
apply ap ((homotopy_group_pequiv_loop_ptrunc (k+1) A)⁻¹ᵉ*),
|
||||
refine _ ⬝ !loopn_pequiv_loopn_con ,
|
||||
apply ap (loopn_pequiv_loopn (k+1) _),
|
||||
apply phomotopy_group_pequiv_loop_ptrunc_con}
|
||||
apply homotopy_group_pequiv_loop_ptrunc_con}
|
||||
end
|
||||
|
||||
/- some homomorphisms -/
|
||||
|
||||
-- definition is_homomorphism_cast_loop_space_succ_eq_in {A : Type*} (n : ℕ) :
|
||||
-- is_homomorphism (loop_space_succ_in A (succ n) : πg[n+1+1] A → πg[n+1] (Ω A)) :=
|
||||
-- definition is_homomorphism_cast_loopn_succ_eq_in {A : Type*} (n : ℕ) :
|
||||
-- is_homomorphism (loopn_succ_in A (succ n) : πg[n+1+1] A → πg[n+1] (Ω A)) :=
|
||||
-- begin
|
||||
-- intro g h, induction g with g, induction h with h,
|
||||
-- xrewrite [tr_mul_tr, - + fn_cast_eq_cast_fn _ (λn, tr), tr_mul_tr, ↑cast, -tr_compose,
|
||||
-- loop_space_succ_eq_in_concat, - + tr_compose],
|
||||
-- loopn_succ_eq_in_concat, - + tr_compose],
|
||||
-- end
|
||||
|
||||
definition is_homomorphism_inverse (A : Type*) (n : ℕ)
|
||||
|
|
|
@ -220,7 +220,7 @@ namespace EM
|
|||
end ops
|
||||
open ops
|
||||
|
||||
definition phomotopy_group_EM (n : ℕ) : π*[n] (EM G n) ≃* pType_of_Group G :=
|
||||
definition homotopy_group_EM (n : ℕ) : π[n] (EM G n) ≃* pType_of_Group G :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ rexact ptrunc_pequiv 0 (pType_of_Group G) _},
|
||||
|
@ -318,7 +318,7 @@ namespace EM
|
|||
(pEM1_pequiv e)⁻¹ᵉ* ⬝e* pEM1_pequiv !isomorphism.refl
|
||||
|
||||
open circle int
|
||||
definition EM_pequiv_circle : K agℤ 1 ≃* S¹. :=
|
||||
definition EM_pequiv_circle : K agℤ 1 ≃* S¹* :=
|
||||
!EMadd1_pequiv_pEM1 ⬝e* pEM1_pequiv fundamental_group_of_circle
|
||||
|
||||
/- loops of EM-spaces -/
|
||||
|
|
|
@ -264,26 +264,26 @@ namespace chain_complex
|
|||
|
||||
/- Now we are ready to define the long exact sequence of homotopy groups.
|
||||
First we define its carrier -/
|
||||
definition loop_spaces : ℕ → Type*
|
||||
definition loopns : ℕ → Type*
|
||||
| 0 := Y
|
||||
| 1 := X
|
||||
| 2 := pfiber f
|
||||
| (k+3) := Ω (loop_spaces k)
|
||||
| (k+3) := Ω (loopns k)
|
||||
|
||||
/- The maps between the homotopy groups -/
|
||||
definition loop_spaces_fun
|
||||
: Π(n : ℕ), loop_spaces (n+1) →* loop_spaces n
|
||||
definition loopns_fun
|
||||
: Π(n : ℕ), loopns (n+1) →* loopns n
|
||||
| 0 := proof f qed
|
||||
| 1 := proof ppoint f qed
|
||||
| 2 := proof boundary_map qed
|
||||
| (k+3) := proof ap1 (loop_spaces_fun k) qed
|
||||
| (k+3) := proof ap1 (loopns_fun k) qed
|
||||
|
||||
definition loop_spaces_fun_add3 [unfold_full] (n : ℕ) :
|
||||
loop_spaces_fun (n + 3) = ap1 (loop_spaces_fun n) :=
|
||||
definition loopns_fun_add3 [unfold_full] (n : ℕ) :
|
||||
loopns_fun (n + 3) = ap1 (loopns_fun n) :=
|
||||
proof idp qed
|
||||
|
||||
definition fiber_sequence_pequiv_loop_spaces :
|
||||
Πn, fiber_sequence_carrier n ≃* loop_spaces n
|
||||
definition fiber_sequence_pequiv_loopns :
|
||||
Πn, fiber_sequence_carrier n ≃* loopns n
|
||||
| 0 := by reflexivity
|
||||
| 1 := by reflexivity
|
||||
| 2 := by reflexivity
|
||||
|
@ -291,22 +291,22 @@ namespace chain_complex
|
|||
begin
|
||||
refine fiber_sequence_carrier_pequiv k ⬝e* _,
|
||||
apply loop_pequiv_loop,
|
||||
exact fiber_sequence_pequiv_loop_spaces k
|
||||
exact fiber_sequence_pequiv_loopns k
|
||||
end
|
||||
|
||||
definition fiber_sequence_pequiv_loop_spaces_add3 (n : ℕ)
|
||||
: fiber_sequence_pequiv_loop_spaces (n + 3) =
|
||||
ap1 (fiber_sequence_pequiv_loop_spaces n) ∘* fiber_sequence_carrier_pequiv n :=
|
||||
definition fiber_sequence_pequiv_loopns_add3 (n : ℕ)
|
||||
: fiber_sequence_pequiv_loopns (n + 3) =
|
||||
ap1 (fiber_sequence_pequiv_loopns n) ∘* fiber_sequence_carrier_pequiv n :=
|
||||
by reflexivity
|
||||
|
||||
definition fiber_sequence_pequiv_loop_spaces_3_phomotopy
|
||||
: fiber_sequence_pequiv_loop_spaces 3 ~* proof fiber_sequence_carrier_pequiv nat.zero qed :=
|
||||
definition fiber_sequence_pequiv_loopns_3_phomotopy
|
||||
: fiber_sequence_pequiv_loopns 3 ~* proof fiber_sequence_carrier_pequiv nat.zero qed :=
|
||||
begin
|
||||
refine pwhisker_right _ ap1_id ⬝* _,
|
||||
apply pid_comp
|
||||
refine pwhisker_right _ ap1_pid ⬝* _,
|
||||
apply pid_pcompose
|
||||
end
|
||||
|
||||
definition pid_or_pinverse : Π(n : ℕ), loop_spaces n ≃* loop_spaces n
|
||||
definition pid_or_pinverse : Π(n : ℕ), loopns n ≃* loopns n
|
||||
| 0 := pequiv.rfl
|
||||
| 1 := pequiv.rfl
|
||||
| 2 := pequiv.rfl
|
||||
|
@ -321,69 +321,69 @@ namespace chain_complex
|
|||
pid_or_pinverse (n + 4) ~* pinverse ∘* Ω→(pid_or_pinverse (n + 1))
|
||||
| 0 := begin rewrite [pid_or_pinverse_add4, + to_pmap_pequiv_trans],
|
||||
replace pid_or_pinverse (0 + 1) with pequiv.refl X,
|
||||
rewrite [loop_pequiv_loop_rfl, ▸*], refine !pid_comp ⬝* _,
|
||||
exact !comp_pid⁻¹* ⬝* pwhisker_left _ !ap1_id⁻¹* end
|
||||
rewrite [loop_pequiv_loop_rfl, ▸*], refine !pid_pcompose ⬝* _,
|
||||
exact !pcompose_pid⁻¹* ⬝* pwhisker_left _ !ap1_pid⁻¹* end
|
||||
| 1 := begin rewrite [pid_or_pinverse_add4, + to_pmap_pequiv_trans],
|
||||
replace pid_or_pinverse (1 + 1) with pequiv.refl (pfiber f),
|
||||
rewrite [loop_pequiv_loop_rfl, ▸*], refine !pid_comp ⬝* _,
|
||||
exact !comp_pid⁻¹* ⬝* pwhisker_left _ !ap1_id⁻¹* end
|
||||
rewrite [loop_pequiv_loop_rfl, ▸*], refine !pid_pcompose ⬝* _,
|
||||
exact !pcompose_pid⁻¹* ⬝* pwhisker_left _ !ap1_pid⁻¹* end
|
||||
| 2 := begin rewrite [pid_or_pinverse_add4, + to_pmap_pequiv_trans],
|
||||
replace pid_or_pinverse (2 + 1) with pequiv.refl (Ω Y),
|
||||
rewrite [loop_pequiv_loop_rfl, ▸*], refine !pid_comp ⬝* _,
|
||||
exact !comp_pid⁻¹* ⬝* pwhisker_left _ !ap1_id⁻¹* end
|
||||
rewrite [loop_pequiv_loop_rfl, ▸*], refine !pid_pcompose ⬝* _,
|
||||
exact !pcompose_pid⁻¹* ⬝* pwhisker_left _ !ap1_pid⁻¹* end
|
||||
| (k+3) :=
|
||||
begin
|
||||
replace (k + 3 + 1) with (k + 4),
|
||||
rewrite [+ pid_or_pinverse_add4, + to_pmap_pequiv_trans],
|
||||
refine _ ⬝* pwhisker_left _ !ap1_compose⁻¹*,
|
||||
refine _ ⬝* pwhisker_left _ !ap1_pcompose⁻¹*,
|
||||
refine _ ⬝* !passoc,
|
||||
apply pconcat2,
|
||||
{ refine ap1_phomotopy (pid_or_pinverse_add4_rev k) ⬝* _,
|
||||
refine !ap1_compose ⬝* _, apply pwhisker_right, apply ap1_pinverse},
|
||||
refine !ap1_pcompose ⬝* _, apply pwhisker_right, apply ap1_pinverse},
|
||||
{ refine !ap1_pinverse⁻¹*}
|
||||
end
|
||||
|
||||
theorem fiber_sequence_phomotopy_loop_spaces : Π(n : ℕ),
|
||||
fiber_sequence_pequiv_loop_spaces n ∘* fiber_sequence_fun n ~*
|
||||
(loop_spaces_fun n ∘* pid_or_pinverse (n + 1)) ∘* fiber_sequence_pequiv_loop_spaces (n + 1)
|
||||
| 0 := proof proof phomotopy.rfl qed ⬝* pwhisker_right _ !comp_pid⁻¹* qed
|
||||
theorem fiber_sequence_phomotopy_loopns : Π(n : ℕ),
|
||||
fiber_sequence_pequiv_loopns n ∘* fiber_sequence_fun n ~*
|
||||
(loopns_fun n ∘* pid_or_pinverse (n + 1)) ∘* fiber_sequence_pequiv_loopns (n + 1)
|
||||
| 0 := proof proof phomotopy.rfl qed ⬝* pwhisker_right _ !pcompose_pid⁻¹* qed
|
||||
| 1 := by reflexivity
|
||||
| 2 :=
|
||||
begin
|
||||
refine !pid_comp ⬝* _,
|
||||
replace loop_spaces_fun 2 with boundary_map,
|
||||
refine _ ⬝* pwhisker_left _ fiber_sequence_pequiv_loop_spaces_3_phomotopy⁻¹*,
|
||||
refine !pid_pcompose ⬝* _,
|
||||
replace loopns_fun 2 with boundary_map,
|
||||
refine _ ⬝* pwhisker_left _ fiber_sequence_pequiv_loopns_3_phomotopy⁻¹*,
|
||||
apply phomotopy_of_pinv_right_phomotopy,
|
||||
exact !pid_comp⁻¹*
|
||||
exact !pid_pcompose⁻¹*
|
||||
end
|
||||
| (k+3) :=
|
||||
begin
|
||||
replace (k + 3 + 1) with (k + 1 + 3),
|
||||
rewrite [fiber_sequence_pequiv_loop_spaces_add3 k,
|
||||
fiber_sequence_pequiv_loop_spaces_add3 (k+1)],
|
||||
rewrite [fiber_sequence_pequiv_loopns_add3 k,
|
||||
fiber_sequence_pequiv_loopns_add3 (k+1)],
|
||||
refine !passoc ⬝* _,
|
||||
refine pwhisker_left _ (fiber_sequence_fun_phomotopy k) ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
||||
apply pwhisker_right,
|
||||
replace (k + 1 + 3) with (k + 4),
|
||||
xrewrite [loop_spaces_fun_add3, pid_or_pinverse_add4, to_pmap_pequiv_trans],
|
||||
xrewrite [loopns_fun_add3, pid_or_pinverse_add4, to_pmap_pequiv_trans],
|
||||
refine _ ⬝* !passoc⁻¹*,
|
||||
refine _ ⬝* pwhisker_left _ !passoc⁻¹*,
|
||||
refine _ ⬝* pwhisker_left _ (pwhisker_left _ !ap1_compose_pinverse),
|
||||
refine _ ⬝* pwhisker_left _ (pwhisker_left _ !ap1_pcompose_pinverse),
|
||||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc ⬝* !passoc,
|
||||
apply pwhisker_right,
|
||||
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose ⬝* pwhisker_right _ !ap1_compose,
|
||||
refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose ⬝* pwhisker_right _ !ap1_pcompose,
|
||||
apply ap1_phomotopy,
|
||||
exact fiber_sequence_phomotopy_loop_spaces k
|
||||
exact fiber_sequence_phomotopy_loopns k
|
||||
end
|
||||
|
||||
definition pid_or_pinverse_right : Π(n : ℕ), loop_spaces n →* loop_spaces n
|
||||
definition pid_or_pinverse_right : Π(n : ℕ), loopns n →* loopns n
|
||||
| 0 := !pid
|
||||
| 1 := !pid
|
||||
| 2 := !pid
|
||||
| (k+3) := Ω→(pid_or_pinverse_right k) ∘* pinverse
|
||||
|
||||
definition pid_or_pinverse_left : Π(n : ℕ), loop_spaces n →* loop_spaces n
|
||||
definition pid_or_pinverse_left : Π(n : ℕ), loopns n →* loopns n
|
||||
| 0 := pequiv.rfl
|
||||
| 1 := pequiv.rfl
|
||||
| 2 := pequiv.rfl
|
||||
|
@ -400,63 +400,63 @@ namespace chain_complex
|
|||
by reflexivity
|
||||
|
||||
theorem pid_or_pinverse_commute_right : Π(n : ℕ),
|
||||
loop_spaces_fun n ~* pid_or_pinverse_right n ∘* loop_spaces_fun n ∘* pid_or_pinverse (n + 1)
|
||||
| 0 := proof !comp_pid⁻¹* ⬝* !pid_comp⁻¹* qed
|
||||
| 1 := proof !comp_pid⁻¹* ⬝* !pid_comp⁻¹* qed
|
||||
| 2 := proof !comp_pid⁻¹* ⬝* !pid_comp⁻¹* qed
|
||||
loopns_fun n ~* pid_or_pinverse_right n ∘* loopns_fun n ∘* pid_or_pinverse (n + 1)
|
||||
| 0 := proof !pcompose_pid⁻¹* ⬝* !pid_pcompose⁻¹* qed
|
||||
| 1 := proof !pcompose_pid⁻¹* ⬝* !pid_pcompose⁻¹* qed
|
||||
| 2 := proof !pcompose_pid⁻¹* ⬝* !pid_pcompose⁻¹* qed
|
||||
| (k+3) :=
|
||||
begin
|
||||
replace (k + 3 + 1) with (k + 4),
|
||||
rewrite [pid_or_pinverse_right_add3, loop_spaces_fun_add3],
|
||||
rewrite [pid_or_pinverse_right_add3, loopns_fun_add3],
|
||||
refine _ ⬝* pwhisker_left _ (pwhisker_left _ !pid_or_pinverse_add4_rev⁻¹*),
|
||||
refine ap1_phomotopy (pid_or_pinverse_commute_right k) ⬝* _,
|
||||
refine !ap1_compose ⬝* _ ⬝* !passoc⁻¹*,
|
||||
refine !ap1_pcompose ⬝* _ ⬝* !passoc⁻¹*,
|
||||
apply pwhisker_left,
|
||||
refine !ap1_compose ⬝* _ ⬝* !passoc ⬝* !passoc,
|
||||
refine !ap1_pcompose ⬝* _ ⬝* !passoc ⬝* !passoc,
|
||||
apply pwhisker_right,
|
||||
refine _ ⬝* pwhisker_right _ !ap1_compose_pinverse,
|
||||
refine _ ⬝* pwhisker_right _ !ap1_pcompose_pinverse,
|
||||
refine _ ⬝* !passoc⁻¹*,
|
||||
refine !comp_pid⁻¹* ⬝* pwhisker_left _ _,
|
||||
refine !pcompose_pid⁻¹* ⬝* pwhisker_left _ _,
|
||||
symmetry, apply pinverse_pinverse
|
||||
end
|
||||
|
||||
theorem pid_or_pinverse_commute_left : Π(n : ℕ),
|
||||
loop_spaces_fun n ∘* pid_or_pinverse_left (n + 1) ~* pid_or_pinverse n ∘* loop_spaces_fun n
|
||||
| 0 := proof !comp_pid ⬝* !pid_comp⁻¹* qed
|
||||
| 1 := proof !comp_pid ⬝* !pid_comp⁻¹* qed
|
||||
| 2 := proof !comp_pid ⬝* !pid_comp⁻¹* qed
|
||||
| 3 := proof !comp_pid ⬝* !pid_comp⁻¹* qed
|
||||
loopns_fun n ∘* pid_or_pinverse_left (n + 1) ~* pid_or_pinverse n ∘* loopns_fun n
|
||||
| 0 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed
|
||||
| 1 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed
|
||||
| 2 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed
|
||||
| 3 := proof !pcompose_pid ⬝* !pid_pcompose⁻¹* qed
|
||||
| (k+4) :=
|
||||
begin
|
||||
replace (k + 4 + 1) with (k + 5),
|
||||
rewrite [pid_or_pinverse_left_add5, pid_or_pinverse_add4, to_pmap_pequiv_trans],
|
||||
replace (k + 4) with (k + 1 + 3),
|
||||
rewrite [loop_spaces_fun_add3],
|
||||
rewrite [loopns_fun_add3],
|
||||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc⁻¹*,
|
||||
refine _ ⬝* pwhisker_left _ !ap1_compose_pinverse,
|
||||
refine _ ⬝* pwhisker_left _ !ap1_pcompose_pinverse,
|
||||
refine _ ⬝* !passoc,
|
||||
apply pwhisker_right,
|
||||
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose,
|
||||
refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose,
|
||||
exact ap1_phomotopy (pid_or_pinverse_commute_left (k+1))
|
||||
end
|
||||
|
||||
definition LES_of_loop_spaces' [constructor] : type_chain_complex +ℕ :=
|
||||
definition LES_of_loopns' [constructor] : type_chain_complex +ℕ :=
|
||||
transfer_type_chain_complex
|
||||
fiber_sequence
|
||||
(λn, loop_spaces_fun n ∘* pid_or_pinverse (n + 1))
|
||||
fiber_sequence_pequiv_loop_spaces
|
||||
fiber_sequence_phomotopy_loop_spaces
|
||||
(λn, loopns_fun n ∘* pid_or_pinverse (n + 1))
|
||||
fiber_sequence_pequiv_loopns
|
||||
fiber_sequence_phomotopy_loopns
|
||||
|
||||
definition LES_of_loop_spaces [constructor] : type_chain_complex +ℕ :=
|
||||
definition LES_of_loopns [constructor] : type_chain_complex +ℕ :=
|
||||
type_chain_complex_cancel_aut
|
||||
LES_of_loop_spaces'
|
||||
loop_spaces_fun
|
||||
LES_of_loopns'
|
||||
loopns_fun
|
||||
pid_or_pinverse
|
||||
pid_or_pinverse_right
|
||||
(λn x, idp)
|
||||
pid_or_pinverse_commute_right
|
||||
|
||||
definition is_exact_LES_of_loop_spaces : is_exact_t LES_of_loop_spaces :=
|
||||
definition is_exact_LES_of_loopns : is_exact_t LES_of_loopns :=
|
||||
begin
|
||||
intro n,
|
||||
refine is_exact_at_t_cancel_aut n pid_or_pinverse_left _ _ pid_or_pinverse_commute_left _,
|
||||
|
@ -470,38 +470,38 @@ namespace chain_complex
|
|||
PART 3
|
||||
--------------/
|
||||
|
||||
definition loop_spaces2 [reducible] : +3ℕ → Type*
|
||||
definition loopns2 [reducible] : +3ℕ → Type*
|
||||
| (n, fin.mk 0 H) := Ω[n] Y
|
||||
| (n, fin.mk 1 H) := Ω[n] X
|
||||
| (n, fin.mk k H) := Ω[n] (pfiber f)
|
||||
|
||||
definition loop_spaces2_add1 (n : ℕ) : Π(x : fin 3),
|
||||
loop_spaces2 (n+1, x) = Ω (loop_spaces2 (n, x))
|
||||
definition loopns2_add1 (n : ℕ) : Π(x : fin 3),
|
||||
loopns2 (n+1, x) = Ω (loopns2 (n, x))
|
||||
| (fin.mk 0 H) := by reflexivity
|
||||
| (fin.mk 1 H) := by reflexivity
|
||||
| (fin.mk 2 H) := by reflexivity
|
||||
| (fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
||||
definition loop_spaces_fun2 : Π(n : +3ℕ), loop_spaces2 (S n) →* loop_spaces2 n
|
||||
definition loopns_fun2 : Π(n : +3ℕ), loopns2 (S n) →* loopns2 n
|
||||
| (n, fin.mk 0 H) := proof Ω→[n] f qed
|
||||
| (n, fin.mk 1 H) := proof Ω→[n] (ppoint f) qed
|
||||
| (n, fin.mk 2 H) := proof Ω→[n] boundary_map ∘* loop_space_succ_in Y n qed
|
||||
| (n, fin.mk 2 H) := proof Ω→[n] boundary_map ∘* loopn_succ_in Y n qed
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
||||
definition loop_spaces_fun2_add1_0 (n : ℕ) (H : 0 < succ 2)
|
||||
: loop_spaces_fun2 (n+1, fin.mk 0 H) ~*
|
||||
cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 0 H)) :=
|
||||
definition loopns_fun2_add1_0 (n : ℕ) (H : 0 < succ 2)
|
||||
: loopns_fun2 (n+1, fin.mk 0 H) ~*
|
||||
cast proof idp qed ap1 (loopns_fun2 (n, fin.mk 0 H)) :=
|
||||
by reflexivity
|
||||
|
||||
definition loop_spaces_fun2_add1_1 (n : ℕ) (H : 1 < succ 2)
|
||||
: loop_spaces_fun2 (n+1, fin.mk 1 H) ~*
|
||||
cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 1 H)) :=
|
||||
definition loopns_fun2_add1_1 (n : ℕ) (H : 1 < succ 2)
|
||||
: loopns_fun2 (n+1, fin.mk 1 H) ~*
|
||||
cast proof idp qed ap1 (loopns_fun2 (n, fin.mk 1 H)) :=
|
||||
by reflexivity
|
||||
|
||||
definition loop_spaces_fun2_add1_2 (n : ℕ) (H : 2 < succ 2)
|
||||
: loop_spaces_fun2 (n+1, fin.mk 2 H) ~*
|
||||
cast proof idp qed ap1 (loop_spaces_fun2 (n, fin.mk 2 H)) :=
|
||||
proof !ap1_compose⁻¹* qed
|
||||
definition loopns_fun2_add1_2 (n : ℕ) (H : 2 < succ 2)
|
||||
: loopns_fun2 (n+1, fin.mk 2 H) ~*
|
||||
cast proof idp qed ap1 (loopns_fun2 (n, fin.mk 2 H)) :=
|
||||
proof !ap1_pcompose⁻¹* qed
|
||||
|
||||
definition nat_of_str [unfold 2] [reducible] {n : ℕ} : ℕ × fin (succ n) → ℕ :=
|
||||
λx, succ n * pr1 x + val (pr2 x)
|
||||
|
@ -537,126 +537,126 @@ namespace chain_complex
|
|||
note: in the following theorem the (n+1) case is 3 times the same,
|
||||
so maybe this can be simplified
|
||||
-/
|
||||
definition loop_spaces2_pequiv' : Π(n : ℕ) (x : fin (nat.succ 2)),
|
||||
loop_spaces (nat_of_str (n, x)) ≃* loop_spaces2 (n, x)
|
||||
definition loopns2_pequiv' : Π(n : ℕ) (x : fin (nat.succ 2)),
|
||||
loopns (nat_of_str (n, x)) ≃* loopns2 (n, x)
|
||||
| 0 (fin.mk 0 H) := by reflexivity
|
||||
| 0 (fin.mk 1 H) := by reflexivity
|
||||
| 0 (fin.mk 2 H) := by reflexivity
|
||||
| (n+1) (fin.mk 0 H) :=
|
||||
begin
|
||||
apply loop_pequiv_loop,
|
||||
rexact loop_spaces2_pequiv' n (fin.mk 0 H)
|
||||
rexact loopns2_pequiv' n (fin.mk 0 H)
|
||||
end
|
||||
| (n+1) (fin.mk 1 H) :=
|
||||
begin
|
||||
apply loop_pequiv_loop,
|
||||
rexact loop_spaces2_pequiv' n (fin.mk 1 H)
|
||||
rexact loopns2_pequiv' n (fin.mk 1 H)
|
||||
end
|
||||
| (n+1) (fin.mk 2 H) :=
|
||||
begin
|
||||
apply loop_pequiv_loop,
|
||||
rexact loop_spaces2_pequiv' n (fin.mk 2 H)
|
||||
rexact loopns2_pequiv' n (fin.mk 2 H)
|
||||
end
|
||||
| n (fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
||||
definition loop_spaces2_pequiv : Π(x : +3ℕ),
|
||||
loop_spaces (nat_of_str x) ≃* loop_spaces2 x
|
||||
| (n, x) := loop_spaces2_pequiv' n x
|
||||
definition loopns2_pequiv : Π(x : +3ℕ),
|
||||
loopns (nat_of_str x) ≃* loopns2 x
|
||||
| (n, x) := loopns2_pequiv' n x
|
||||
|
||||
local attribute loop_pequiv_loop [reducible]
|
||||
|
||||
/- all cases where n>0 are basically the same -/
|
||||
definition loop_spaces_fun2_phomotopy (x : +3ℕ) :
|
||||
loop_spaces2_pequiv x ∘* loop_spaces_fun (nat_of_str x) ~*
|
||||
(loop_spaces_fun2 x ∘* loop_spaces2_pequiv (S x))
|
||||
∘* pcast (ap (loop_spaces) (nat_of_str_3S x)) :=
|
||||
definition loopns_fun2_phomotopy (x : +3ℕ) :
|
||||
loopns2_pequiv x ∘* loopns_fun (nat_of_str x) ~*
|
||||
(loopns_fun2 x ∘* loopns2_pequiv (S x))
|
||||
∘* pcast (ap (loopns) (nat_of_str_3S x)) :=
|
||||
begin
|
||||
cases x with n x, cases x with k H,
|
||||
do 3 (cases k with k; rotate 1),
|
||||
{ /-k≥3-/ exfalso, apply lt_le_antisymm H, apply le_add_left},
|
||||
{ /-k=0-/
|
||||
induction n with n IH,
|
||||
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
|
||||
{ refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹* ⬝* !pcompose_pid⁻¹*,
|
||||
reflexivity},
|
||||
{ refine _ ⬝* !comp_pid⁻¹*,
|
||||
refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_0⁻¹*,
|
||||
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
|
||||
exact IH ⬝* !comp_pid}},
|
||||
{ refine _ ⬝* !pcompose_pid⁻¹*,
|
||||
refine _ ⬝* pwhisker_right _ !loopns_fun2_add1_0⁻¹*,
|
||||
refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose, apply ap1_phomotopy,
|
||||
exact IH ⬝* !pcompose_pid}},
|
||||
{ /-k=1-/
|
||||
induction n with n IH,
|
||||
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
|
||||
{ refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹* ⬝* !pcompose_pid⁻¹*,
|
||||
reflexivity},
|
||||
{ refine _ ⬝* !comp_pid⁻¹*,
|
||||
refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_1⁻¹*,
|
||||
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
|
||||
exact IH ⬝* !comp_pid}},
|
||||
{ refine _ ⬝* !pcompose_pid⁻¹*,
|
||||
refine _ ⬝* pwhisker_right _ !loopns_fun2_add1_1⁻¹*,
|
||||
refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose, apply ap1_phomotopy,
|
||||
exact IH ⬝* !pcompose_pid}},
|
||||
{ /-k=2-/
|
||||
induction n with n IH,
|
||||
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
|
||||
refine !comp_pid⁻¹* ⬝* pconcat2 _ _,
|
||||
{ exact (comp_pid (chain_complex.boundary_map f))⁻¹*},
|
||||
{ refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹*,
|
||||
refine !pcompose_pid⁻¹* ⬝* pconcat2 _ _,
|
||||
{ exact (pcompose_pid (chain_complex.boundary_map f))⁻¹*},
|
||||
{ refine cast (ap (λx, _ ~* x) !loop_pequiv_loop_rfl)⁻¹ _, reflexivity}},
|
||||
{ refine _ ⬝* !comp_pid⁻¹*,
|
||||
refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_2⁻¹*,
|
||||
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
|
||||
exact IH ⬝* !comp_pid}},
|
||||
{ refine _ ⬝* !pcompose_pid⁻¹*,
|
||||
refine _ ⬝* pwhisker_right _ !loopns_fun2_add1_2⁻¹*,
|
||||
refine !ap1_pcompose⁻¹* ⬝* _ ⬝* !ap1_pcompose, apply ap1_phomotopy,
|
||||
exact IH ⬝* !pcompose_pid}},
|
||||
end
|
||||
|
||||
definition LES_of_loop_spaces2 [constructor] : type_chain_complex +3ℕ :=
|
||||
definition LES_of_loopns2 [constructor] : type_chain_complex +3ℕ :=
|
||||
transfer_type_chain_complex2
|
||||
LES_of_loop_spaces
|
||||
LES_of_loopns
|
||||
!fin_prod_nat_equiv_nat
|
||||
nat_of_str_3S
|
||||
@loop_spaces_fun2
|
||||
@loop_spaces2_pequiv
|
||||
@loopns_fun2
|
||||
@loopns2_pequiv
|
||||
begin
|
||||
intro m x,
|
||||
refine loop_spaces_fun2_phomotopy m x ⬝ _,
|
||||
apply ap (loop_spaces_fun2 m), apply ap (loop_spaces2_pequiv (S m)),
|
||||
refine loopns_fun2_phomotopy m x ⬝ _,
|
||||
apply ap (loopns_fun2 m), apply ap (loopns2_pequiv (S m)),
|
||||
esimp, exact ap010 cast !ap_compose⁻¹ x
|
||||
end
|
||||
|
||||
definition is_exact_LES_of_loop_spaces2 : is_exact_t LES_of_loop_spaces2 :=
|
||||
definition is_exact_LES_of_loopns2 : is_exact_t LES_of_loopns2 :=
|
||||
begin
|
||||
intro n,
|
||||
apply is_exact_at_t_transfer2,
|
||||
apply is_exact_LES_of_loop_spaces
|
||||
apply is_exact_LES_of_loopns
|
||||
end
|
||||
|
||||
definition LES_of_homotopy_groups' [constructor] : chain_complex +3ℕ :=
|
||||
trunc_chain_complex LES_of_loop_spaces2
|
||||
trunc_chain_complex LES_of_loopns2
|
||||
|
||||
/--------------
|
||||
PART 4
|
||||
--------------/
|
||||
|
||||
definition homotopy_groups [reducible] : +3ℕ → Set*
|
||||
| (n, fin.mk 0 H) := π*[n] Y
|
||||
| (n, fin.mk 1 H) := π*[n] X
|
||||
| (n, fin.mk k H) := π*[n] (pfiber f)
|
||||
| (n, fin.mk 0 H) := π[n] Y
|
||||
| (n, fin.mk 1 H) := π[n] X
|
||||
| (n, fin.mk k H) := π[n] (pfiber f)
|
||||
|
||||
definition homotopy_groups_pequiv_loop_spaces2 [reducible]
|
||||
: Π(n : +3ℕ), ptrunc 0 (loop_spaces2 n) ≃* homotopy_groups n
|
||||
definition homotopy_groups_pequiv_loopns2 [reducible]
|
||||
: Π(n : +3ℕ), ptrunc 0 (loopns2 n) ≃* homotopy_groups n
|
||||
| (n, fin.mk 0 H) := by reflexivity
|
||||
| (n, fin.mk 1 H) := by reflexivity
|
||||
| (n, fin.mk 2 H) := by reflexivity
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
||||
definition homotopy_groups_fun : Π(n : +3ℕ), homotopy_groups (S n) →* homotopy_groups n
|
||||
| (n, fin.mk 0 H) := proof π→*[n] f qed
|
||||
| (n, fin.mk 1 H) := proof π→*[n] (ppoint f) qed
|
||||
| (n, fin.mk 0 H) := proof π→[n] f qed
|
||||
| (n, fin.mk 1 H) := proof π→[n] (ppoint f) qed
|
||||
| (n, fin.mk 2 H) :=
|
||||
proof π→*[n] boundary_map ∘* phomotopy_group_succ_in Y n qed
|
||||
proof π→[n] boundary_map ∘* homotopy_group_succ_in Y n qed
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
||||
definition homotopy_groups_fun_phomotopy_loop_spaces_fun2 [reducible]
|
||||
: Π(n : +3ℕ), homotopy_groups_pequiv_loop_spaces2 n ∘* ptrunc_functor 0 (loop_spaces_fun2 n) ~*
|
||||
homotopy_groups_fun n ∘* homotopy_groups_pequiv_loop_spaces2 (S n)
|
||||
definition homotopy_groups_fun_phomotopy_loopns_fun2 [reducible]
|
||||
: Π(n : +3ℕ), homotopy_groups_pequiv_loopns2 n ∘* ptrunc_functor 0 (loopns_fun2 n) ~*
|
||||
homotopy_groups_fun n ∘* homotopy_groups_pequiv_loopns2 (S n)
|
||||
| (n, fin.mk 0 H) := by reflexivity
|
||||
| (n, fin.mk 1 H) := by reflexivity
|
||||
| (n, fin.mk 2 H) :=
|
||||
begin
|
||||
refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
|
||||
refine !pid_pcompose ⬝* _ ⬝* !pcompose_pid⁻¹*,
|
||||
refine !ptrunc_functor_pcompose
|
||||
end
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
@ -665,32 +665,32 @@ namespace chain_complex
|
|||
transfer_chain_complex
|
||||
LES_of_homotopy_groups'
|
||||
homotopy_groups_fun
|
||||
homotopy_groups_pequiv_loop_spaces2
|
||||
homotopy_groups_fun_phomotopy_loop_spaces_fun2
|
||||
homotopy_groups_pequiv_loopns2
|
||||
homotopy_groups_fun_phomotopy_loopns_fun2
|
||||
|
||||
definition is_exact_LES_of_homotopy_groups : is_exact LES_of_homotopy_groups :=
|
||||
begin
|
||||
intro n,
|
||||
apply is_exact_at_transfer,
|
||||
apply is_exact_at_trunc,
|
||||
apply is_exact_LES_of_loop_spaces2
|
||||
apply is_exact_LES_of_loopns2
|
||||
end
|
||||
|
||||
variable (n : ℕ)
|
||||
|
||||
/- the carrier of the fiber sequence is definitionally what we want (as pointed sets) -/
|
||||
example : LES_of_homotopy_groups (str_of_nat 6) = π*[2] Y :> Set* := by reflexivity
|
||||
example : LES_of_homotopy_groups (str_of_nat 7) = π*[2] X :> Set* := by reflexivity
|
||||
example : LES_of_homotopy_groups (str_of_nat 8) = π*[2] (pfiber f) :> Set* := by reflexivity
|
||||
example : LES_of_homotopy_groups (str_of_nat 9) = π*[3] Y :> Set* := by reflexivity
|
||||
example : LES_of_homotopy_groups (str_of_nat 10) = π*[3] X :> Set* := by reflexivity
|
||||
example : LES_of_homotopy_groups (str_of_nat 11) = π*[3] (pfiber f) :> Set* := by reflexivity
|
||||
example : LES_of_homotopy_groups (str_of_nat 6) = π[2] Y :> Set* := by reflexivity
|
||||
example : LES_of_homotopy_groups (str_of_nat 7) = π[2] X :> Set* := by reflexivity
|
||||
example : LES_of_homotopy_groups (str_of_nat 8) = π[2] (pfiber f) :> Set* := by reflexivity
|
||||
example : LES_of_homotopy_groups (str_of_nat 9) = π[3] Y :> Set* := by reflexivity
|
||||
example : LES_of_homotopy_groups (str_of_nat 10) = π[3] X :> Set* := by reflexivity
|
||||
example : LES_of_homotopy_groups (str_of_nat 11) = π[3] (pfiber f) :> Set* := by reflexivity
|
||||
|
||||
definition LES_of_homotopy_groups_0 : LES_of_homotopy_groups (n, 0) = π*[n] Y :=
|
||||
definition LES_of_homotopy_groups_0 : LES_of_homotopy_groups (n, 0) = π[n] Y :=
|
||||
by reflexivity
|
||||
definition LES_of_homotopy_groups_1 : LES_of_homotopy_groups (n, 1) = π*[n] X :=
|
||||
definition LES_of_homotopy_groups_1 : LES_of_homotopy_groups (n, 1) = π[n] X :=
|
||||
by reflexivity
|
||||
definition LES_of_homotopy_groups_2 : LES_of_homotopy_groups (n, 2) = π*[n] (pfiber f) :=
|
||||
definition LES_of_homotopy_groups_2 : LES_of_homotopy_groups (n, 2) = π[n] (pfiber f) :=
|
||||
by reflexivity
|
||||
|
||||
/-
|
||||
|
@ -698,13 +698,13 @@ namespace chain_complex
|
|||
-/
|
||||
|
||||
definition LES_of_homotopy_groups_fun_0 :
|
||||
cc_to_fn LES_of_homotopy_groups (n, 0) = π→*[n] f :=
|
||||
cc_to_fn LES_of_homotopy_groups (n, 0) = π→[n] f :=
|
||||
by reflexivity
|
||||
definition LES_of_homotopy_groups_fun_1 :
|
||||
cc_to_fn LES_of_homotopy_groups (n, 1) = π→*[n] (ppoint f) :=
|
||||
cc_to_fn LES_of_homotopy_groups (n, 1) = π→[n] (ppoint f) :=
|
||||
by reflexivity
|
||||
definition LES_of_homotopy_groups_fun_2 : cc_to_fn LES_of_homotopy_groups (n, 2) =
|
||||
π→*[n] boundary_map ∘* phomotopy_group_succ_in Y n :=
|
||||
π→[n] boundary_map ∘* homotopy_group_succ_in Y n :=
|
||||
by reflexivity
|
||||
|
||||
open group
|
||||
|
@ -735,10 +735,10 @@ namespace chain_complex
|
|||
Group_LES_of_homotopy_groups (S k) →g Group_LES_of_homotopy_groups k
|
||||
| (k, fin.mk 0 H) :=
|
||||
proof homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 0))
|
||||
(phomotopy_group_functor_mul _ _) qed
|
||||
(homotopy_group_functor_mul _ _) qed
|
||||
| (k, fin.mk 1 H) :=
|
||||
proof homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 1))
|
||||
(phomotopy_group_functor_mul _ _) qed
|
||||
(homotopy_group_functor_mul _ _) qed
|
||||
| (k, fin.mk 2 H) :=
|
||||
begin
|
||||
apply homomorphism.mk (cc_to_fn LES_of_homotopy_groups (k + 1, 2)),
|
||||
|
@ -773,30 +773,30 @@ namespace chain_complex
|
|||
: Π(n : +3ℕ), fibration_sequence_car (S n) →* fibration_sequence_car n
|
||||
| (n, fin.mk 0 H) := proof Ω→[n] f qed
|
||||
| (n, fin.mk 1 H) := proof Ω→[n] g qed
|
||||
| (n, fin.mk 2 H) := proof Ω→[n] (e ∘* boundary_map f) ∘* loop_space_succ_in Y n qed
|
||||
| (n, fin.mk 2 H) := proof Ω→[n] (e ∘* boundary_map f) ∘* loopn_succ_in Y n qed
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
||||
definition fibration_sequence_pequiv : Π(x : +3ℕ),
|
||||
loop_spaces2 f x ≃* fibration_sequence_car x
|
||||
loopns2 f x ≃* fibration_sequence_car x
|
||||
| (n, fin.mk 0 H) := by reflexivity
|
||||
| (n, fin.mk 1 H) := by reflexivity
|
||||
| (n, fin.mk 2 H) := loopn_pequiv_loopn n e
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
||||
definition fibration_sequence_fun_phomotopy : Π(x : +3ℕ),
|
||||
fibration_sequence_pequiv x ∘* loop_spaces_fun2 f x ~*
|
||||
fibration_sequence_pequiv x ∘* loopns_fun2 f x ~*
|
||||
(fibration_sequence_fun x ∘* fibration_sequence_pequiv (S x))
|
||||
| (n, fin.mk 0 H) := by reflexivity
|
||||
| (n, fin.mk 1 H) :=
|
||||
begin refine !pid_comp ⬝* _, refine apn_phomotopy n p ⬝* _,
|
||||
refine !apn_compose ⬝* _, reflexivity end
|
||||
| (n, fin.mk 2 H) := begin refine !passoc⁻¹* ⬝* _ ⬝* !comp_pid⁻¹*, apply pwhisker_right,
|
||||
refine _ ⬝* !apn_compose⁻¹*, reflexivity end
|
||||
begin refine !pid_pcompose ⬝* _, refine apn_phomotopy n p ⬝* _,
|
||||
refine !apn_pcompose ⬝* _, reflexivity end
|
||||
| (n, fin.mk 2 H) := begin refine !passoc⁻¹* ⬝* _ ⬝* !pcompose_pid⁻¹*, apply pwhisker_right,
|
||||
refine _ ⬝* !apn_pcompose⁻¹*, reflexivity end
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
||||
definition type_fibration_sequence [constructor] : type_chain_complex +3ℕ :=
|
||||
transfer_type_chain_complex
|
||||
(LES_of_loop_spaces2 f)
|
||||
(LES_of_loopns2 f)
|
||||
fibration_sequence_fun
|
||||
fibration_sequence_pequiv
|
||||
fibration_sequence_fun_phomotopy
|
||||
|
@ -805,7 +805,7 @@ namespace chain_complex
|
|||
begin
|
||||
intro n,
|
||||
apply is_exact_at_t_transfer,
|
||||
apply is_exact_LES_of_loop_spaces2
|
||||
apply is_exact_LES_of_loopns2
|
||||
end
|
||||
|
||||
definition fibration_sequence [constructor] : chain_complex +3ℕ :=
|
||||
|
|
|
@ -220,7 +220,7 @@ namespace circle
|
|||
pointed.mk base
|
||||
|
||||
definition pcircle [constructor] : Type* := pointed.mk' S¹
|
||||
notation `S¹.` := pcircle
|
||||
notation `S¹*` := pcircle
|
||||
|
||||
definition loop_neq_idp : loop ≠ idp :=
|
||||
assume H : loop = idp,
|
||||
|
@ -295,13 +295,13 @@ namespace circle
|
|||
--the carrier of π₁(S¹) is the set-truncation of base = base.
|
||||
open algebra trunc group
|
||||
|
||||
definition fg_carrier_equiv_int : π[1](S¹.) ≃ ℤ :=
|
||||
definition fg_carrier_equiv_int : π[1](S¹*) ≃ ℤ :=
|
||||
trunc_equiv_trunc 0 base_eq_base_equiv ⬝e @(trunc_equiv 0 ℤ) proof _ qed
|
||||
|
||||
definition con_comm_base (p q : base = base) : p ⬝ q = q ⬝ p :=
|
||||
eq_of_fn_eq_fn base_eq_base_equiv (by esimp;rewrite [+encode_con,add.comm])
|
||||
|
||||
definition fundamental_group_of_circle : π₁(S¹.) ≃g gℤ :=
|
||||
definition fundamental_group_of_circle : π₁(S¹*) ≃g gℤ :=
|
||||
begin
|
||||
apply (isomorphism_of_equiv fg_carrier_equiv_int),
|
||||
intros g h,
|
||||
|
@ -310,9 +310,9 @@ namespace circle
|
|||
end
|
||||
|
||||
open nat
|
||||
definition homotopy_group_of_circle (n : ℕ) : πg[n+1 +1] S¹. ≃g G0 :=
|
||||
definition homotopy_group_of_circle (n : ℕ) : πg[n+2] S¹* ≃g G0 :=
|
||||
begin
|
||||
refine @trivial_homotopy_add_of_is_set_loop_space S¹. 1 n _,
|
||||
refine @trivial_homotopy_add_of_is_set_loopn S¹* 1 n _,
|
||||
apply is_trunc_equiv_closed_rev, apply base_eq_base_equiv
|
||||
end
|
||||
|
||||
|
@ -337,8 +337,8 @@ namespace circle
|
|||
proposition is_conn_circle [instance] : is_conn 0 S¹ :=
|
||||
sphere.is_conn_sphere -1.+2
|
||||
|
||||
definition is_conn_pcircle [instance] : is_conn 0 S¹. := !is_conn_circle
|
||||
definition is_trunc_pcircle [instance] : is_trunc 1 S¹. := !is_trunc_circle
|
||||
definition is_conn_pcircle [instance] : is_conn 0 S¹* := !is_conn_circle
|
||||
definition is_trunc_pcircle [instance] : is_trunc 1 S¹* := !is_trunc_circle
|
||||
|
||||
definition circle_mul [reducible] (x y : S¹) : S¹ :=
|
||||
circle.elim y (circle_turn y) x
|
||||
|
|
|
@ -36,10 +36,10 @@ namespace hopf
|
|||
apply inv (hopf.total S¹), apply inv (join.spheres 1 1), exact x
|
||||
end
|
||||
|
||||
definition complex_phopf [constructor] : S. 3 →* S. 2 :=
|
||||
definition complex_phopf [constructor] : S* 3 →* S* 2 :=
|
||||
proof pmap.mk complex_hopf idp qed
|
||||
|
||||
definition pfiber_complex_phopf : pfiber complex_phopf ≃* S. 1 :=
|
||||
definition pfiber_complex_phopf : pfiber complex_phopf ≃* S* 1 :=
|
||||
begin
|
||||
fapply pequiv_of_equiv,
|
||||
{ esimp, unfold [complex_hopf],
|
||||
|
|
|
@ -178,12 +178,12 @@ definition freudenthal_equiv {A : Type*} {n k : ℕ} [is_conn n A] (H : k ≤ 2
|
|||
freudenthal_pequiv A H
|
||||
|
||||
definition freudenthal_homotopy_group_pequiv (A : Type*) {n k : ℕ} [is_conn n A] (H : k ≤ 2 * n)
|
||||
: π*[k + 1] (psusp A) ≃* π*[k] A :=
|
||||
: π[k + 1] (psusp A) ≃* π[k] A :=
|
||||
calc
|
||||
π*[k + 1] (psusp A) ≃* π*[k] (Ω (psusp A)) : phomotopy_group_succ_in (psusp A) k
|
||||
... ≃* Ω[k] (ptrunc k (Ω (psusp A))) : phomotopy_group_pequiv_loop_ptrunc k (Ω (psusp A))
|
||||
π[k + 1] (psusp A) ≃* π[k] (Ω (psusp A)) : homotopy_group_succ_in (psusp A) k
|
||||
... ≃* Ω[k] (ptrunc k (Ω (psusp A))) : homotopy_group_pequiv_loop_ptrunc k (Ω (psusp A))
|
||||
... ≃* Ω[k] (ptrunc k A) : loopn_pequiv_loopn k (freudenthal_pequiv A H)
|
||||
... ≃* π*[k] A : (phomotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
|
||||
... ≃* π[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
|
||||
|
||||
definition freudenthal_homotopy_group_isomorphism (A : Type*) {n k : ℕ} [is_conn n A]
|
||||
(H : k + 1 ≤ 2 * n) : πg[k+1 +1] (psusp A) ≃g πg[k+1] A :=
|
||||
|
@ -191,17 +191,17 @@ begin
|
|||
fapply isomorphism_of_equiv,
|
||||
{ exact equiv_of_pequiv (freudenthal_homotopy_group_pequiv A H)},
|
||||
{ intro g h,
|
||||
refine _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_inv_con,
|
||||
apply ap !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
|
||||
refine _ ⬝ !homotopy_group_pequiv_loop_ptrunc_inv_con,
|
||||
apply ap !homotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
|
||||
refine ap (loopn_pequiv_loopn _ _) _ ⬝ !loopn_pequiv_loopn_con,
|
||||
refine ap !phomotopy_group_pequiv_loop_ptrunc _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_con,
|
||||
apply phomotopy_group_succ_in_con}
|
||||
refine ap !homotopy_group_pequiv_loop_ptrunc _ ⬝ !homotopy_group_pequiv_loop_ptrunc_con,
|
||||
apply homotopy_group_succ_in_con}
|
||||
end
|
||||
|
||||
namespace susp
|
||||
|
||||
definition iterate_psusp_stability_pequiv (A : Type*) {k n : ℕ} [is_conn 0 A]
|
||||
(H : k ≤ 2 * n) : π*[k + 1] (iterate_psusp (n + 1) A) ≃* π*[k] (iterate_psusp n A) :=
|
||||
(H : k ≤ 2 * n) : π[k + 1] (iterate_psusp (n + 1) A) ≃* π[k] (iterate_psusp n A) :=
|
||||
have is_conn n (iterate_psusp n A), by rewrite [-zero_add n]; exact _,
|
||||
freudenthal_homotopy_group_pequiv (iterate_psusp n A) H
|
||||
|
||||
|
@ -227,8 +227,8 @@ namespace susp
|
|||
end
|
||||
|
||||
definition iterate_susp_stability_pequiv (A : Type) {k n : ℕ}
|
||||
(H : k + 2 ≤ 2 * n) : π*[k + 1] (pointed.MK (iterate_susp (n + 2) A) !north) ≃*
|
||||
π*[k ] (pointed.MK (iterate_susp (n + 1) A) !north) :=
|
||||
(H : k + 2 ≤ 2 * n) : π[k + 1] (pointed.MK (iterate_susp (n + 2) A) !north) ≃*
|
||||
π[k ] (pointed.MK (iterate_susp (n + 1) A) !north) :=
|
||||
have is_conn (pred n) (carrier (pointed.MK (iterate_susp (n + 1) A) !north)), from
|
||||
stability_helper2 A H,
|
||||
freudenthal_homotopy_group_pequiv (pointed.MK (iterate_susp (n + 1) A) !north)
|
||||
|
|
|
@ -34,13 +34,13 @@ namespace is_trunc
|
|||
have H3 : is_contr (ptrunc k A), from is_conn_of_le A (of_nat_le_of_nat H),
|
||||
have H4 : is_contr (Ω[k](ptrunc k A)), from !is_trunc_loop_of_is_trunc,
|
||||
apply is_trunc_equiv_closed_rev,
|
||||
{ apply equiv_of_pequiv (phomotopy_group_pequiv_loop_ptrunc k A)}
|
||||
{ apply equiv_of_pequiv (homotopy_group_pequiv_loop_ptrunc k A)}
|
||||
end
|
||||
|
||||
-- Corollary 8.3.3
|
||||
section
|
||||
open sphere sphere.ops sphere_index
|
||||
theorem homotopy_group_sphere_le (n k : ℕ) (H : k < n) : is_contr (π[k] (S. n)) :=
|
||||
theorem homotopy_group_sphere_le (n k : ℕ) (H : k < n) : is_contr (π[k] (S* n)) :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ exfalso, apply not_lt_zero, exact H},
|
||||
|
@ -54,12 +54,12 @@ namespace is_trunc
|
|||
@(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt)
|
||||
|
||||
theorem homotopy_group_trunc_of_le (A : Type*) (n k : ℕ) (H : k ≤ n)
|
||||
: π*[k] (ptrunc n A) ≃* π*[k] A :=
|
||||
: π[k] (ptrunc n A) ≃* π[k] A :=
|
||||
begin
|
||||
refine !phomotopy_group_pequiv_loop_ptrunc ⬝e* _,
|
||||
refine !homotopy_group_pequiv_loop_ptrunc ⬝e* _,
|
||||
refine loopn_pequiv_loopn _ (ptrunc_ptrunc_pequiv_left _ _) ⬝e* _,
|
||||
exact of_nat_le_of_nat H,
|
||||
exact !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
|
||||
exact !homotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
|
||||
end
|
||||
|
||||
/- Corollaries of the LES of homotopy groups -/
|
||||
|
@ -96,11 +96,11 @@ namespace is_trunc
|
|||
theorem is_equiv_π_of_is_connected.{u v} {A : pType.{u}} {B : pType.{v}} {n k : ℕ} (f : A →* B)
|
||||
(H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) :=
|
||||
begin
|
||||
have π→*[k] pdown.{v u} ∘* π→*[k] (plift_functor f) ∘* π→*[k] pup.{u v} ~* π→*[k] f,
|
||||
have π→[k] pdown.{v u} ∘* π→[k] (plift_functor f) ∘* π→[k] pup.{u v} ~* π→[k] f,
|
||||
begin
|
||||
refine pwhisker_left _ !phomotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
refine !phomotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
apply phomotopy_group_functor_phomotopy, apply plift_functor_phomotopy
|
||||
refine pwhisker_left _ !homotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
refine !homotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
apply homotopy_group_functor_phomotopy, apply plift_functor_phomotopy
|
||||
end,
|
||||
have π→[k] pdown.{v u} ∘ π→[k] (plift_functor f) ∘ π→[k] pup.{u v} ~ π→[k] f, from this,
|
||||
apply is_equiv.homotopy_closed, rotate 1,
|
||||
|
@ -112,8 +112,8 @@ namespace is_trunc
|
|||
end
|
||||
|
||||
definition π_equiv_π_of_is_connected {A B : Type*} {n k : ℕ} (f : A →* B)
|
||||
(H2 : k ≤ n) [H : is_conn_fun n f] : π*[k] A ≃* π*[k] B :=
|
||||
pequiv_of_pmap (π→*[k] f) (is_equiv_π_of_is_connected f H2)
|
||||
(H2 : k ≤ n) [H : is_conn_fun n f] : π[k] A ≃* π[k] B :=
|
||||
pequiv_of_pmap (π→[k] f) (is_equiv_π_of_is_connected f H2)
|
||||
|
||||
-- TODO: prove this for A and B in different universe levels
|
||||
theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ℕ) (f : A →* B)
|
||||
|
@ -128,7 +128,7 @@ namespace is_trunc
|
|||
-/
|
||||
definition whitehead_principle (n : ℕ₋₂) {A B : Type}
|
||||
[HA : is_trunc n A] [HB : is_trunc n B] (f : A → B) (H' : is_equiv (trunc_functor 0 f))
|
||||
(H : Πa k, is_equiv (π→*[k + 1] (pmap_of_map f a))) : is_equiv f :=
|
||||
(H : Πa k, is_equiv (π→[k + 1] (pmap_of_map f a))) : is_equiv f :=
|
||||
begin
|
||||
revert A B HA HB f H' H, induction n with n IH: intros,
|
||||
{ apply is_equiv_of_is_contr},
|
||||
|
@ -138,24 +138,24 @@ namespace is_trunc
|
|||
apply IH, do 2 (esimp; exact _),
|
||||
{ rexact H a 0},
|
||||
intro p k,
|
||||
have is_equiv (π→*[k + 1] (Ω→(pmap_of_map f a))),
|
||||
from is_equiv_phomotopy_group_functor_ap1 (k+1) (pmap_of_map f a),
|
||||
have is_equiv (π→[k + 1] (Ω→(pmap_of_map f a))),
|
||||
from is_equiv_homotopy_group_functor_ap1 (k+1) (pmap_of_map f a),
|
||||
have Π(b : A) (p : a = b),
|
||||
is_equiv (pmap.to_fun (π→*[k + 1] (pmap_of_map (ap f) p))),
|
||||
is_equiv (pmap.to_fun (π→[k + 1] (pmap_of_map (ap f) p))),
|
||||
begin
|
||||
intro b p, induction p, apply is_equiv.homotopy_closed, exact this,
|
||||
refine phomotopy_group_functor_phomotopy _ _,
|
||||
refine homotopy_group_functor_phomotopy _ _,
|
||||
apply ap1_pmap_of_map
|
||||
end,
|
||||
have is_equiv (phomotopy_group_pequiv _
|
||||
have is_equiv (homotopy_group_pequiv _
|
||||
(pequiv_of_eq_pt (!idp_con⁻¹ : ap f p = Ω→ (pmap_of_map f a) p)) ∘
|
||||
pmap.to_fun (π→*[k + 1] (pmap_of_map (ap f) p))),
|
||||
pmap.to_fun (π→[k + 1] (pmap_of_map (ap f) p))),
|
||||
begin
|
||||
apply is_equiv_compose, exact this a p,
|
||||
end,
|
||||
apply is_equiv.homotopy_closed, exact this,
|
||||
refine !phomotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
apply phomotopy_group_functor_phomotopy,
|
||||
refine !homotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
apply homotopy_group_functor_phomotopy,
|
||||
fapply phomotopy.mk,
|
||||
{ esimp, intro q, refine !idp_con⁻¹},
|
||||
{ esimp, refine !idp_con⁻¹},
|
||||
|
@ -165,23 +165,23 @@ namespace is_trunc
|
|||
|
||||
definition whitehead_principle_pointed (n : ℕ₋₂) {A B : Type*}
|
||||
[HA : is_trunc n A] [HB : is_trunc n B] [is_conn 0 A] (f : A →* B)
|
||||
(H : Πk, is_equiv (π→*[k] f)) : is_equiv f :=
|
||||
(H : Πk, is_equiv (π→[k] f)) : is_equiv f :=
|
||||
begin
|
||||
apply whitehead_principle n, rexact H 0,
|
||||
intro a k, revert a, apply is_conn.elim -1,
|
||||
have is_equiv (π→*[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)
|
||||
∘* π→*[k + 1] f ∘* π→*[k + 1] (pointed_eta_pequiv A)⁻¹ᵉ*),
|
||||
have is_equiv (π→[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)
|
||||
∘* π→[k + 1] f ∘* π→[k + 1] (pointed_eta_pequiv A)⁻¹ᵉ*),
|
||||
begin
|
||||
apply is_equiv_compose
|
||||
(π→*[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)),
|
||||
apply is_equiv_compose (π→*[k + 1] f),
|
||||
(π→[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)),
|
||||
apply is_equiv_compose (π→[k + 1] f),
|
||||
all_goals apply is_equiv_homotopy_group_functor,
|
||||
end,
|
||||
refine @(is_equiv.homotopy_closed _) _ this _,
|
||||
apply to_homotopy,
|
||||
refine pwhisker_left _ !phomotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
refine !phomotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
apply phomotopy_group_functor_phomotopy, apply phomotopy_pmap_of_map
|
||||
refine pwhisker_left _ !homotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
refine !homotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
apply homotopy_group_functor_phomotopy, apply phomotopy_pmap_of_map
|
||||
end
|
||||
|
||||
open pointed.ops
|
||||
|
@ -236,7 +236,7 @@ namespace is_trunc
|
|||
have H3 : Πa, is_contr (ptrunc n (pfiber (pmap_of_map f a))),
|
||||
begin
|
||||
intro a, apply is_contr_of_trivial_homotopy_nat_pointed n,
|
||||
{ intro k H, apply is_trunc_equiv_closed_rev, exact phomotopy_group_ptrunc_of_le H _,
|
||||
{ intro k H, apply is_trunc_equiv_closed_rev, exact homotopy_group_ptrunc_of_le H _,
|
||||
rexact @is_contr_of_is_embedding_of_is_surjective +3ℕ
|
||||
(LES_of_homotopy_groups (pmap_of_map f a)) (k, 0)
|
||||
(is_exact_LES_of_homotopy_groups _ _)
|
||||
|
|
|
@ -255,29 +255,29 @@ namespace sphere
|
|||
|
||||
namespace ops
|
||||
abbreviation S := sphere
|
||||
notation `S.` := psphere
|
||||
notation `S*` := psphere
|
||||
end ops
|
||||
open sphere.ops
|
||||
|
||||
definition sphere_minus_one : S -1 = empty := idp
|
||||
definition sphere_succ [unfold_full] (n : ℕ₋₁) : S n.+1 = susp (S n) := idp
|
||||
definition psphere_succ [unfold_full] (n : ℕ) : S. (n + 1) = psusp (S. n) := idp
|
||||
definition psphere_succ [unfold_full] (n : ℕ) : S* (n + 1) = psusp (S* n) := idp
|
||||
definition psphere_eq_iterate_susp (n : ℕ)
|
||||
: S. n = pointed.MK (iterate_susp (succ n) empty) !north :=
|
||||
: S* n = pointed.MK (iterate_susp (succ n) empty) !north :=
|
||||
begin
|
||||
esimp,
|
||||
apply ap (λx, pointed.MK (susp x) (@north x)); apply ap (λx, iterate_susp x empty),
|
||||
apply add_one_sub_one
|
||||
end
|
||||
|
||||
definition equator [constructor] (n : ℕ) : S. n →* Ω (S. (succ n)) :=
|
||||
loop_susp_unit (S. n)
|
||||
definition equator [constructor] (n : ℕ) : S* n →* Ω (S* (succ n)) :=
|
||||
loop_susp_unit (S* n)
|
||||
|
||||
definition surf {n : ℕ} : Ω[n] S. n :=
|
||||
definition surf {n : ℕ} : Ω[n] (S* n) :=
|
||||
begin
|
||||
induction n with n s,
|
||||
{ exact @base 0},
|
||||
{ exact (loop_space_succ_in (S. (succ n)) n)⁻¹ᵉ* (apn n (equator n) s), }
|
||||
{ exact (loopn_succ_in (S* (succ n)) n)⁻¹ᵉ* (apn n (equator n) s), }
|
||||
end
|
||||
|
||||
definition bool_of_sphere [unfold 1] : S 0 → bool :=
|
||||
|
@ -293,24 +293,24 @@ namespace sphere
|
|||
(λb, match b with | tt := idp | ff := idp end)
|
||||
(λx, proof susp.rec_on x idp idp (empty.rec _) qed)
|
||||
|
||||
definition psphere_pequiv_pbool : S. 0 ≃* pbool :=
|
||||
definition psphere_pequiv_pbool : S* 0 ≃* pbool :=
|
||||
pequiv_of_equiv sphere_equiv_bool idp
|
||||
|
||||
definition sphere_eq_bool : S 0 = bool :=
|
||||
ua sphere_equiv_bool
|
||||
|
||||
definition sphere_eq_pbool : S. 0 = pbool :=
|
||||
definition sphere_eq_pbool : S* 0 = pbool :=
|
||||
pType_eq sphere_equiv_bool idp
|
||||
|
||||
-- TODO1: the commented-out part makes the forward function below "apn _ surf" (the next def also)
|
||||
-- TODO2: we could make this a pointed equivalence
|
||||
definition pmap_sphere (A : Type*) (n : ℕ) : (S. n →* A) ≃ Ω[n] A :=
|
||||
definition psphere_pmap_equiv (A : Type*) (n : ℕ) : (S* n →* A) ≃ Ω[n] A :=
|
||||
begin
|
||||
-- fapply equiv_change_fun,
|
||||
-- {
|
||||
revert A, induction n with n IH: intro A,
|
||||
{ refine _ ⬝e !pmap_bool_equiv, exact equiv_ppcompose_right psphere_pequiv_pbool⁻¹ᵉ*},
|
||||
{ refine susp_adjoint_loop (S. n) A ⬝e !IH ⬝e !loop_space_succ_in⁻¹ᵉ* }
|
||||
{ refine _ ⬝e !pmap_bool_equiv, exact pequiv_ppcompose_right psphere_pequiv_pbool⁻¹ᵉ*},
|
||||
{ refine susp_adjoint_loop (S* n) A ⬝e !IH ⬝e !loopn_succ_in⁻¹ᵉ* }
|
||||
-- },
|
||||
-- { intro f, exact apn n f surf},
|
||||
-- { revert A, induction n with n IH: intro A f,
|
||||
|
@ -318,25 +318,25 @@ namespace sphere
|
|||
-- { exact sorry}}
|
||||
end
|
||||
|
||||
-- definition pmap_sphere' (A : Type*) (n : ℕ) : (S. n →* A) ≃ Ω[n] A :=
|
||||
-- definition psphere_pmap_equiv' (A : Type*) (n : ℕ) : (S* n →* A) ≃ Ω[n] A :=
|
||||
-- begin
|
||||
-- fapply equiv.MK,
|
||||
-- { intro f, exact apn n f surf },
|
||||
-- { revert A, induction n with n IH: intro A p,
|
||||
-- { exact !pmap_bool_equiv⁻¹ᵉ p ∘* psphere_pequiv_pbool },
|
||||
-- { refine (susp_adjoint_loop (S. n) A)⁻¹ᵉ (IH (Ω A) _),
|
||||
-- exact loop_space_succ_in A n p }},
|
||||
-- { refine (susp_adjoint_loop (S* n) A)⁻¹ᵉ (IH (Ω A) _),
|
||||
-- exact loopn_succ_in A n p }},
|
||||
-- { exact sorry},
|
||||
-- { exact sorry}
|
||||
-- end
|
||||
|
||||
protected definition elim {n : ℕ} {P : Type*} (p : Ω[n] P) : S. n →* P :=
|
||||
to_inv !pmap_sphere p
|
||||
protected definition elim {n : ℕ} {P : Type*} (p : Ω[n] P) : S* n →* P :=
|
||||
to_inv !psphere_pmap_equiv p
|
||||
|
||||
-- definition elim_surf {n : ℕ} {P : Type*} (p : Ω[n] P) : apn n (sphere.elim p) surf = p :=
|
||||
-- begin
|
||||
-- induction n with n IH,
|
||||
-- { esimp [apn,surf,sphere.elim,pmap_sphere], apply sorry},
|
||||
-- { esimp [apn,surf,sphere.elim,psphere_pmap_equiv], apply sorry},
|
||||
-- { apply sorry}
|
||||
-- end
|
||||
|
||||
|
@ -354,7 +354,7 @@ namespace sphere
|
|||
apply is_conn_susp }
|
||||
end
|
||||
|
||||
theorem is_conn_psphere [instance] (n : ℕ) : is_conn (n.-1) (S. n) :=
|
||||
theorem is_conn_psphere [instance] (n : ℕ) : is_conn (n.-1) (S* n) :=
|
||||
transport (λx, is_conn x (sphere n)) (of_nat_sub_one n) (is_conn_sphere n)
|
||||
|
||||
end sphere
|
||||
|
@ -364,12 +364,12 @@ open sphere sphere.ops
|
|||
namespace is_trunc
|
||||
open trunc_index
|
||||
variables {n : ℕ} {A : Type}
|
||||
definition is_trunc_of_pmap_sphere_constant
|
||||
(H : Π(a : A) (f : S. n →* pointed.Mk a) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
|
||||
definition is_trunc_of_psphere_pmap_equiv_constant
|
||||
(H : Π(a : A) (f : S* n →* pointed.Mk a) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
|
||||
begin
|
||||
apply iff.elim_right !is_trunc_iff_is_contr_loop,
|
||||
intro a,
|
||||
apply is_trunc_equiv_closed, apply pmap_sphere,
|
||||
apply is_trunc_equiv_closed, apply psphere_pmap_equiv,
|
||||
fapply is_contr.mk,
|
||||
{ exact pmap.mk (λx, a) idp},
|
||||
{ intro f, fapply pmap_eq,
|
||||
|
@ -380,27 +380,27 @@ namespace is_trunc
|
|||
definition is_trunc_iff_map_sphere_constant
|
||||
(H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
|
||||
begin
|
||||
apply is_trunc_of_pmap_sphere_constant,
|
||||
apply is_trunc_of_psphere_pmap_equiv_constant,
|
||||
intros, cases f with f p, esimp at *, apply H
|
||||
end
|
||||
|
||||
definition pmap_sphere_constant_of_is_trunc' [H : is_trunc (n.-2.+1) A]
|
||||
(a : A) (f : S. n →* pointed.Mk a) (x : S n) : f x = f base :=
|
||||
definition psphere_pmap_equiv_constant_of_is_trunc' [H : is_trunc (n.-2.+1) A]
|
||||
(a : A) (f : S* n →* pointed.Mk a) (x : S n) : f x = f base :=
|
||||
begin
|
||||
let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a,
|
||||
note H'' := @is_trunc_equiv_closed_rev _ _ _ !pmap_sphere H',
|
||||
note H'' := @is_trunc_equiv_closed_rev _ _ _ !psphere_pmap_equiv H',
|
||||
have p : (f = pmap.mk (λx, f base) (respect_pt f)),
|
||||
by apply is_prop.elim,
|
||||
exact ap10 (ap pmap.to_fun p) x
|
||||
end
|
||||
|
||||
definition pmap_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
|
||||
(a : A) (f : S. n →* pointed.Mk a) (x y : S n) : f x = f y :=
|
||||
let H := pmap_sphere_constant_of_is_trunc' a f in !H ⬝ !H⁻¹
|
||||
definition psphere_pmap_equiv_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
|
||||
(a : A) (f : S* n →* pointed.Mk a) (x y : S n) : f x = f y :=
|
||||
let H := psphere_pmap_equiv_constant_of_is_trunc' a f in !H ⬝ !H⁻¹
|
||||
|
||||
definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
|
||||
(f : S n → A) (x y : S n) : f x = f y :=
|
||||
pmap_sphere_constant_of_is_trunc (f base) (pmap.mk f idp) x y
|
||||
psphere_pmap_equiv_constant_of_is_trunc (f base) (pmap.mk f idp) x y
|
||||
|
||||
definition map_sphere_constant_of_is_trunc_self [H : is_trunc (n.-2.+1) A]
|
||||
(f : S n → A) (x : S n) : map_sphere_constant_of_is_trunc f x x = idp :=
|
||||
|
|
|
@ -20,7 +20,7 @@ namespace sphere
|
|||
/- Corollaries of the complex hopf fibration combined with the LES of homotopy groups -/
|
||||
open sphere sphere.ops int circle hopf
|
||||
|
||||
definition π2S2 : πg[1+1] (S. 2) ≃g gℤ :=
|
||||
definition π2S2 : πg[1+1] (S* 2) ≃g gℤ :=
|
||||
begin
|
||||
refine _ ⬝g fundamental_group_of_circle,
|
||||
refine _ ⬝g homotopy_group_isomorphism_of_pequiv _ pfiber_complex_phopf,
|
||||
|
@ -47,7 +47,7 @@ namespace sphere
|
|||
end
|
||||
|
||||
open circle
|
||||
definition πnS3_eq_πnS2 (n : ℕ) : πg[n+2 +1] (S. 3) ≃g πg[n+2 +1] (S. 2) :=
|
||||
definition πnS3_eq_πnS2 (n : ℕ) : πg[n+2 +1] (S* 3) ≃g πg[n+2 +1] (S* 2) :=
|
||||
begin
|
||||
fapply isomorphism_of_equiv,
|
||||
{ fapply equiv.mk,
|
||||
|
@ -75,15 +75,15 @@ namespace sphere
|
|||
end
|
||||
|
||||
definition sphere_stability_pequiv (k n : ℕ) (H : k + 2 ≤ 2 * n) :
|
||||
π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) :=
|
||||
π[k + 1] (S* (n+1)) ≃* π[k] (S* n) :=
|
||||
begin rewrite [+ psphere_eq_iterate_susp], exact iterate_susp_stability_pequiv empty H end
|
||||
|
||||
definition stability_isomorphism (k n : ℕ) (H : k + 3 ≤ 2 * n)
|
||||
: πg[k+1 +1] (S. (n+1)) ≃g πg[k+1] (S. n) :=
|
||||
: πg[k+1 +1] (S* (n+1)) ≃g πg[k+1] (S* n) :=
|
||||
begin rewrite [+ psphere_eq_iterate_susp], exact iterate_susp_stability_isomorphism empty H end
|
||||
|
||||
open int circle hopf
|
||||
definition πnSn (n : ℕ) : πg[n+1] (S. (succ n)) ≃g gℤ :=
|
||||
definition πnSn (n : ℕ) : πg[n+1] (S* (succ n)) ≃g gℤ :=
|
||||
begin
|
||||
cases n with n IH,
|
||||
{ exact fundamental_group_of_circle},
|
||||
|
@ -93,10 +93,10 @@ namespace sphere
|
|||
rexact add_mul_le_mul_add n 1 2}}
|
||||
end
|
||||
|
||||
theorem not_is_trunc_sphere (n : ℕ) : ¬is_trunc n (S. (succ n)) :=
|
||||
theorem not_is_trunc_sphere (n : ℕ) : ¬is_trunc n (S* (succ n)) :=
|
||||
begin
|
||||
intro H,
|
||||
note H2 := trivial_ghomotopy_group_of_is_trunc (S. (succ n)) n n !le.refl,
|
||||
note H2 := trivial_ghomotopy_group_of_is_trunc (S* (succ n)) n n !le.refl,
|
||||
have H3 : is_contr ℤ, from is_trunc_equiv_closed _ (equiv_of_isomorphism (πnSn n)),
|
||||
have H4 : (0 : ℤ) ≠ (1 : ℤ), from dec_star,
|
||||
apply H4,
|
||||
|
@ -120,7 +120,7 @@ namespace sphere
|
|||
|
||||
end
|
||||
|
||||
definition π3S2 : πg[2+1] (S. 2) ≃g gℤ :=
|
||||
definition π3S2 : πg[2+1] (S* 2) ≃g gℤ :=
|
||||
(πnS3_eq_πnS2 0)⁻¹ᵍ ⬝g πnSn 2
|
||||
|
||||
end sphere
|
||||
|
|
|
@ -321,19 +321,19 @@ namespace susp
|
|||
{ intro f, exact ap1 f ∘* loop_susp_unit X},
|
||||
{ intro g, exact loop_susp_counit Y ∘* psusp_functor g},
|
||||
{ intro g, apply eq_of_phomotopy, esimp,
|
||||
refine !pwhisker_right !ap1_compose ⬝* _,
|
||||
refine !pwhisker_right !ap1_pcompose ⬝* _,
|
||||
refine !passoc ⬝* _,
|
||||
refine !pwhisker_left !loop_susp_unit_natural⁻¹* ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine !pwhisker_right !loop_susp_counit_unit ⬝* _,
|
||||
apply pid_comp},
|
||||
apply pid_pcompose},
|
||||
{ intro f, apply eq_of_phomotopy, esimp,
|
||||
refine !pwhisker_left !psusp_functor_compose ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine !pwhisker_right !loop_susp_counit_natural⁻¹* ⬝* _,
|
||||
refine !passoc ⬝* _,
|
||||
refine !pwhisker_left !loop_susp_unit_counit ⬝* _,
|
||||
apply comp_pid},
|
||||
apply pcompose_pid},
|
||||
end
|
||||
|
||||
definition susp_adjoint_loop_nat_right (f : psusp X →* Y) (g : Y →* Z)
|
||||
|
@ -342,7 +342,7 @@ namespace susp
|
|||
esimp [susp_adjoint_loop],
|
||||
refine _ ⬝* !passoc,
|
||||
apply pwhisker_right,
|
||||
apply ap1_compose
|
||||
apply ap1_pcompose
|
||||
end
|
||||
|
||||
definition susp_adjoint_loop_nat_left (f : Y →* Ω Z) (g : X →* Y)
|
||||
|
|
14
hott/naming_conventions.md
Normal file
14
hott/naming_conventions.md
Normal file
|
@ -0,0 +1,14 @@
|
|||
HoTT Naming Conventions
|
||||
=======================
|
||||
|
||||
|
||||
[generic naming conventions go here]
|
||||
|
||||
Pointed Types
|
||||
-------------
|
||||
|
||||
We use a prefix `p` to specify that an operation/construction is pointed. For example `pequiv` is
|
||||
pointed equivalences and `phomotopy` are pointed homotopies. Only if a construction only works for
|
||||
pointed types and has no unpointed equivalent we omit the `p` (examples: `loop` `loopn`
|
||||
`homotopy_group`). A lemma about pointed constructions repeats the `p` for every name, for example
|
||||
`psusp_pequiv_psusp` or `pid_pcompose`. For notation we append `*` for the pointed version, like `Type*` (this is the universe of pointed types, not the universe considered as a pointed type), `S*` or `bool*`. For notations which only make sense pointed we don't add the star, like `Ω[n]` or `π[k]`.
|
|
@ -19,15 +19,15 @@ namespace pointed
|
|||
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
|
||||
pointed.mk (f pt)
|
||||
|
||||
definition ploop_space [reducible] [constructor] (A : Type*) : Type* :=
|
||||
definition loop [reducible] [constructor] (A : Type*) : Type* :=
|
||||
pointed.mk' (point A = point A)
|
||||
|
||||
definition iterated_ploop_space [reducible] : ℕ → Type* → Type*
|
||||
| iterated_ploop_space 0 X := X
|
||||
| iterated_ploop_space (n+1) X := ploop_space (iterated_ploop_space n X)
|
||||
definition loopn [reducible] : ℕ → Type* → Type*
|
||||
| loopn 0 X := X
|
||||
| loopn (n+1) X := loop (loopn n X)
|
||||
|
||||
notation `Ω` := ploop_space
|
||||
notation `Ω[`:95 n:0 `] `:0 A:95 := iterated_ploop_space n A
|
||||
notation `Ω` := loop
|
||||
notation `Ω[`:95 n:0 `]`:0 := loopn n
|
||||
|
||||
namespace ops
|
||||
-- this is in a separate namespace because it caused type class inference to loop in some places
|
||||
|
@ -40,17 +40,17 @@ namespace pointed
|
|||
(n : ℕ₋₂) [H : is_trunc (n.+1) A] : is_trunc n (Ω A) :=
|
||||
!is_trunc_eq
|
||||
|
||||
definition iterated_ploop_space_zero [unfold_full] (A : Type*)
|
||||
definition loopn_zero_eq [unfold_full] (A : Type*)
|
||||
: Ω[0] A = A := rfl
|
||||
|
||||
definition iterated_ploop_space_succ [unfold_full] (k : ℕ) (A : Type*)
|
||||
: Ω[succ k] A = Ω Ω[k] A := rfl
|
||||
definition loopn_succ_eq [unfold_full] (k : ℕ) (A : Type*)
|
||||
: Ω[succ k] A = Ω (Ω[k] A) := rfl
|
||||
|
||||
definition rfln [constructor] [reducible] {n : ℕ} {A : Type*} : Ω[n] A := pt
|
||||
definition refln [constructor] [reducible] (n : ℕ) (A : Type*) : Ω[n] A := pt
|
||||
definition refln_eq_refl [unfold_full] (A : Type*) (n : ℕ) : rfln = rfl :> Ω[succ n] A := rfl
|
||||
|
||||
definition iterated_loop_space [unfold 3] (A : Type) [H : pointed A] (n : ℕ) : Type :=
|
||||
definition loopn_space [unfold 3] (A : Type) [H : pointed A] (n : ℕ) : Type :=
|
||||
Ω[n] (pointed.mk' A)
|
||||
|
||||
definition loop_mul {k : ℕ} {A : Type*} (mul : A → A → A) : Ω[k] A → Ω[k] A → Ω[k] A :=
|
||||
|
@ -131,14 +131,14 @@ namespace pointed
|
|||
induction pf, induction pg, induction ph, reflexivity
|
||||
end
|
||||
|
||||
definition pid_comp [constructor] (f : A →* B) : pid B ∘* f ~* f :=
|
||||
definition pid_pcompose [constructor] (f : A →* B) : pid B ∘* f ~* f :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro a, reflexivity},
|
||||
{ reflexivity}
|
||||
end
|
||||
|
||||
definition comp_pid [constructor] (f : A →* B) : f ∘* pid A ~* f :=
|
||||
definition pcompose_pid [constructor] (f : A →* B) : f ∘* pid A ~* f :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro a, reflexivity},
|
||||
|
@ -223,7 +223,7 @@ namespace pointed
|
|||
begin
|
||||
induction n with n IH,
|
||||
{ exact f},
|
||||
{ esimp [iterated_ploop_space], exact ap1 IH}
|
||||
{ esimp [loopn], exact ap1 IH}
|
||||
end
|
||||
|
||||
prefix `Ω→`:(max+5) := ap1
|
||||
|
@ -279,7 +279,7 @@ namespace pointed
|
|||
definition is_equiv_pcast [instance] {A B : Type*} (p : A = B) : is_equiv (pcast p) :=
|
||||
!is_equiv_cast
|
||||
|
||||
definition ap1_id [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) :=
|
||||
definition ap1_pid [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro p, esimp, refine !idp_con ⬝ !ap_id},
|
||||
|
@ -293,7 +293,7 @@ namespace pointed
|
|||
{ reflexivity}
|
||||
end
|
||||
|
||||
definition ap1_compose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f :=
|
||||
definition ap1_pcompose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f :=
|
||||
begin
|
||||
induction B, induction C, induction g with g pg, induction f with f pf, esimp at *,
|
||||
induction pg, induction pf,
|
||||
|
@ -302,7 +302,7 @@ namespace pointed
|
|||
{ reflexivity}
|
||||
end
|
||||
|
||||
definition ap1_compose_pinverse (f : A →* B) : ap1 f ∘* pinverse ~* pinverse ∘* ap1 f :=
|
||||
definition ap1_pcompose_pinverse (f : A →* B) : ap1 f ∘* pinverse ~* pinverse ∘* ap1 f :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro p, esimp, refine !con.assoc ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left,
|
||||
|
@ -321,12 +321,6 @@ namespace pointed
|
|||
rewrite [▸*,ap_inv, +con_inv, inv_inv, +con.assoc], repeat apply whisker_left
|
||||
end
|
||||
|
||||
definition pcast_ap_loop_space {A B : Type*} (p : A = B)
|
||||
: pcast (ap ploop_space p) ~* Ω→ (pcast p) :=
|
||||
begin
|
||||
induction p, exact !ap1_id⁻¹*
|
||||
end
|
||||
|
||||
definition pinverse_con [constructor] {X : Type*} (p q : Ω X)
|
||||
: pinverse (p ⬝ q) = pinverse q ⬝ pinverse p :=
|
||||
!con_inv
|
||||
|
@ -411,18 +405,18 @@ namespace pointed
|
|||
{ exact ap1_phomotopy IH}
|
||||
end
|
||||
|
||||
definition apn_compose (n : ℕ) (g : B →* C) (f : A →* B) : apn n (g ∘* f) ~* apn n g ∘* apn n f :=
|
||||
definition apn_pcompose (n : ℕ) (g : B →* C) (f : A →* B) : apn n (g ∘* f) ~* apn n g ∘* apn n f :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ refine ap1_phomotopy IH ⬝* _, apply ap1_compose}
|
||||
{ refine ap1_phomotopy IH ⬝* _, apply ap1_pcompose}
|
||||
end
|
||||
|
||||
definition apn_pid [constructor] {A : Type*} (n : ℕ) : apn n (pid A) ~* pid (Ω[n] A) :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ exact ap1_phomotopy IH ⬝* ap1_id}
|
||||
{ exact ap1_phomotopy IH ⬝* ap1_pid}
|
||||
end
|
||||
|
||||
theorem apn_con (n : ℕ) (f : A →* B) (p q : Ω[n+1] A)
|
||||
|
@ -439,7 +433,7 @@ namespace pointed
|
|||
{ reflexivity}
|
||||
end
|
||||
|
||||
definition pcast_loop_space [constructor] {A B : Type*} (p : A = B) :
|
||||
definition pcast_ap_loop [constructor] {A B : Type*} (p : A = B) :
|
||||
pcast (ap Ω p) ~* ap1 (pcast p) :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
|
@ -589,7 +583,7 @@ namespace pointed
|
|||
refine _⁻¹* ⬝* pwhisker_left f⁻¹ᵉ* p ⬝* _:
|
||||
refine !passoc⁻¹* ⬝* _:
|
||||
refine pwhisker_right _ (pleft_inv f) ⬝* _:
|
||||
apply pid_comp
|
||||
apply pid_pcompose
|
||||
end
|
||||
|
||||
definition pcancel_right (f : A ≃* B) {g h : B →* C} (p : g ∘* f ~* h ∘* f) : g ~* h :=
|
||||
|
@ -597,7 +591,7 @@ namespace pointed
|
|||
refine _⁻¹* ⬝* pwhisker_right f⁻¹ᵉ* p ⬝* _:
|
||||
refine !passoc ⬝* _:
|
||||
refine pwhisker_left _ (pright_inv f) ⬝* _:
|
||||
apply comp_pid
|
||||
apply pcompose_pid
|
||||
end
|
||||
|
||||
definition phomotopy_pinv_right_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
|
||||
|
@ -606,7 +600,7 @@ namespace pointed
|
|||
refine _ ⬝* pwhisker_right _ p, symmetry,
|
||||
refine !passoc ⬝* _,
|
||||
refine pwhisker_left _ (pright_inv f) ⬝* _,
|
||||
apply comp_pid
|
||||
apply pcompose_pid
|
||||
end
|
||||
|
||||
definition phomotopy_of_pinv_right_phomotopy {f : B ≃* A} {g : B →* C} {h : A →* C}
|
||||
|
@ -615,7 +609,7 @@ namespace pointed
|
|||
refine _ ⬝* pwhisker_right _ p, symmetry,
|
||||
refine !passoc ⬝* _,
|
||||
refine pwhisker_left _ (pleft_inv f) ⬝* _,
|
||||
apply comp_pid
|
||||
apply pcompose_pid
|
||||
end
|
||||
|
||||
definition pinv_right_phomotopy_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
|
||||
|
@ -632,7 +626,7 @@ namespace pointed
|
|||
refine _ ⬝* pwhisker_left _ p, symmetry,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine pwhisker_right _ (pleft_inv f) ⬝* _,
|
||||
apply pid_comp
|
||||
apply pid_pcompose
|
||||
end
|
||||
|
||||
definition phomotopy_of_pinv_left_phomotopy {f : C ≃* B} {g : A →* B} {h : A →* C}
|
||||
|
@ -641,7 +635,7 @@ namespace pointed
|
|||
refine _ ⬝* pwhisker_left _ p, symmetry,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine pwhisker_right _ (pright_inv f) ⬝* _,
|
||||
apply pid_comp
|
||||
apply pid_pcompose
|
||||
end
|
||||
|
||||
definition pinv_left_phomotopy_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
|
||||
|
@ -661,18 +655,18 @@ namespace pointed
|
|||
{ apply pleft_inv},
|
||||
{ replace nat.succ n with n + 1,
|
||||
rewrite [+apn_succ],
|
||||
refine !ap1_compose⁻¹* ⬝* _,
|
||||
refine !ap1_pcompose⁻¹* ⬝* _,
|
||||
refine ap1_phomotopy IH ⬝* _,
|
||||
apply ap1_id}
|
||||
apply ap1_pid}
|
||||
end end
|
||||
abstract begin
|
||||
induction n with n IH,
|
||||
{ apply pright_inv},
|
||||
{ replace nat.succ n with n + 1,
|
||||
rewrite [+apn_succ],
|
||||
refine !ap1_compose⁻¹* ⬝* _,
|
||||
refine !ap1_pcompose⁻¹* ⬝* _,
|
||||
refine ap1_phomotopy IH ⬝* _,
|
||||
apply ap1_id}
|
||||
apply ap1_pid}
|
||||
end end
|
||||
|
||||
definition loop_pequiv_loop [constructor] (f : A ≃* B) : Ω A ≃* Ω B :=
|
||||
|
@ -753,31 +747,31 @@ namespace pointed
|
|||
|
||||
/- properties of iterated loop space -/
|
||||
variable (A)
|
||||
definition loop_space_succ_in (n : ℕ) : Ω[succ n] A ≃* Ω[n] (Ω A) :=
|
||||
definition loopn_succ_in (n : ℕ) : Ω[succ n] A ≃* Ω[n] (Ω A) :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ exact loop_pequiv_loop IH}
|
||||
end
|
||||
|
||||
definition loop_space_add (n m : ℕ) : Ω[n] (Ω[m] A) ≃* Ω[m+n] (A) :=
|
||||
definition loopn_add (n m : ℕ) : Ω[n] (Ω[m] A) ≃* Ω[m+n] (A) :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ exact loop_pequiv_loop IH}
|
||||
end
|
||||
|
||||
definition loop_space_succ_eq_out (n : ℕ) : Ω[succ n] A ≃* Ω(Ω[n] A) :=
|
||||
definition loopn_succ_out (n : ℕ) : Ω[succ n] A ≃* Ω(Ω[n] A) :=
|
||||
by reflexivity
|
||||
|
||||
variable {A}
|
||||
|
||||
theorem loop_space_succ_in_con {n : ℕ} (p q : Ω[succ (succ n)] A) :
|
||||
loop_space_succ_in A (succ n) (p ⬝ q) =
|
||||
loop_space_succ_in A (succ n) p ⬝ loop_space_succ_in A (succ n) q :=
|
||||
theorem loopn_succ_in_con {n : ℕ} (p q : Ω[succ (succ n)] A) :
|
||||
loopn_succ_in A (succ n) (p ⬝ q) =
|
||||
loopn_succ_in A (succ n) p ⬝ loopn_succ_in A (succ n) q :=
|
||||
!loop_pequiv_loop_con
|
||||
|
||||
definition loop_space_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A :=
|
||||
definition loopn_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A :=
|
||||
begin
|
||||
intros, fapply pType_eq,
|
||||
{ esimp, transitivity _,
|
||||
|
@ -786,26 +780,26 @@ namespace pointed
|
|||
{ esimp, apply con.left_inv}
|
||||
end
|
||||
|
||||
definition iterated_loop_space_loop_irrel (n : ℕ) (p : point A = point A)
|
||||
definition loopn_space_loop_irrel (n : ℕ) (p : point A = point A)
|
||||
: Ω[succ n](pointed.Mk p) = Ω[succ (succ n)] A :> pType :=
|
||||
calc
|
||||
Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : eq_of_pequiv !loop_space_succ_in
|
||||
... = Ω[n] (Ω[2] A) : loop_space_loop_irrel
|
||||
... = Ω[2+n] A : eq_of_pequiv !loop_space_add
|
||||
Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : eq_of_pequiv !loopn_succ_in
|
||||
... = Ω[n] (Ω[2] A) : loopn_loop_irrel
|
||||
... = Ω[2+n] A : eq_of_pequiv !loopn_add
|
||||
... = Ω[n+2] A : by rewrite [algebra.add.comm]
|
||||
|
||||
definition apn_succ_phomotopy_in (n : ℕ) (f : A →* B) :
|
||||
loop_space_succ_in B n ∘* Ω→[n + 1] f ~* Ω→[n] (Ω→ f) ∘* loop_space_succ_in A n :=
|
||||
loopn_succ_in B n ∘* Ω→[n + 1] f ~* Ω→[n] (Ω→ f) ∘* loopn_succ_in A n :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ exact !ap1_compose⁻¹* ⬝* ap1_phomotopy IH ⬝* !ap1_compose}
|
||||
{ exact !ap1_pcompose⁻¹* ⬝* ap1_phomotopy IH ⬝* !ap1_pcompose}
|
||||
end
|
||||
|
||||
definition ppcompose_left [constructor] (g : B →* C) : ppmap A B →* ppmap A C :=
|
||||
pmap.mk (pcompose g) (eq_of_phomotopy (phomotopy.mk (λa, respect_pt g) (idp_con _)⁻¹))
|
||||
|
||||
definition is_equiv_ppcompose_left [instance] [constructor] (g : B →* C) [H : is_equiv g] :
|
||||
definition is_pequiv_ppcompose_left [instance] [constructor] (g : B →* C) [H : is_equiv g] :
|
||||
is_equiv (@ppcompose_left A B C g) :=
|
||||
begin
|
||||
fapply is_equiv.adjointify,
|
||||
|
@ -813,13 +807,13 @@ namespace pointed
|
|||
all_goals (intros f; esimp; apply eq_of_phomotopy),
|
||||
{ exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f) ~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc
|
||||
... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H))
|
||||
... ~* f : pid_comp f },
|
||||
... ~* f : pid_pcompose f },
|
||||
{ exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f) ~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc
|
||||
... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H))
|
||||
... ~* f : pid_comp f }
|
||||
... ~* f : pid_pcompose f }
|
||||
end
|
||||
|
||||
definition equiv_ppcompose_left [constructor] (g : B ≃* C) : ppmap A B ≃* ppmap A C :=
|
||||
definition pequiv_ppcompose_left [constructor] (g : B ≃* C) : ppmap A B ≃* ppmap A C :=
|
||||
pequiv_of_pmap (ppcompose_left g) _
|
||||
|
||||
definition pcompose_pconst [constructor] (f : B →* C) : f ∘* pconst A B ~* pconst A C :=
|
||||
|
@ -835,15 +829,15 @@ namespace pointed
|
|||
{ apply eq_of_phomotopy, esimp, apply pconst_pcompose }
|
||||
end
|
||||
|
||||
definition equiv_ppcompose_right [constructor] (f : A ≃* B) : ppmap B C ≃* ppmap A C :=
|
||||
definition pequiv_ppcompose_right [constructor] (f : A ≃* B) : ppmap B C ≃* ppmap A C :=
|
||||
begin
|
||||
fapply pequiv.MK,
|
||||
{ exact ppcompose_right f },
|
||||
{ exact ppcompose_right f⁻¹ᵉ* },
|
||||
{ intro g, apply eq_of_phomotopy, refine !passoc ⬝* _,
|
||||
refine pwhisker_left g !pright_inv ⬝* !comp_pid, },
|
||||
refine pwhisker_left g !pright_inv ⬝* !pcompose_pid, },
|
||||
{ intro g, apply eq_of_phomotopy, refine !passoc ⬝* _,
|
||||
refine pwhisker_left g !pleft_inv ⬝* !comp_pid, },
|
||||
refine pwhisker_left g !pleft_inv ⬝* !pcompose_pid, },
|
||||
end
|
||||
|
||||
|
||||
|
|
|
@ -420,15 +420,15 @@ namespace is_trunc
|
|||
: is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](pointed.Mk a)) :=
|
||||
begin
|
||||
revert A, induction n with n IH,
|
||||
{ intro A, esimp [iterated_ploop_space], transitivity _,
|
||||
{ intro A, esimp [loopn], transitivity _,
|
||||
{ apply is_trunc_succ_iff_is_trunc_loop, apply le.refl},
|
||||
{ apply pi_iff_pi, intro a, esimp, apply is_prop_iff_is_contr, reflexivity}},
|
||||
{ intro A, esimp [iterated_ploop_space],
|
||||
{ intro A, esimp [loopn],
|
||||
transitivity _,
|
||||
{ apply @is_trunc_succ_iff_is_trunc_loop @n, esimp, apply minus_one_le_succ},
|
||||
apply pi_iff_pi, intro a, transitivity _, apply IH,
|
||||
transitivity _, apply pi_iff_pi, intro p,
|
||||
rewrite [iterated_loop_space_loop_irrel n p], apply iff.refl, esimp,
|
||||
rewrite [loopn_space_loop_irrel n p], apply iff.refl, esimp,
|
||||
apply imp_iff, reflexivity}
|
||||
end
|
||||
|
||||
|
@ -437,7 +437,7 @@ namespace is_trunc
|
|||
: is_trunc (n.-2.+1) A ↔ (Π(a : A), is_contr (Ω[n](pointed.Mk a))) :=
|
||||
begin
|
||||
induction n with n,
|
||||
{ esimp [sub_two,iterated_ploop_space], apply iff.intro,
|
||||
{ esimp [sub_two,loopn], apply iff.intro,
|
||||
intro H a, exact is_contr_of_inhabited_prop a,
|
||||
intro H, apply is_prop_of_imp_is_contr, exact H},
|
||||
{ apply is_trunc_iff_is_contr_loop_succ},
|
||||
|
@ -718,34 +718,34 @@ namespace trunc
|
|||
encode_con p q
|
||||
|
||||
-- rename
|
||||
definition iterated_loop_ptrunc_pequiv (n : ℕ₋₂) (k : ℕ) (A : Type*) :
|
||||
definition loopn_ptrunc_pequiv (n : ℕ₋₂) (k : ℕ) (A : Type*) :
|
||||
Ω[k] (ptrunc (n+k) A) ≃* ptrunc n (Ω[k] A) :=
|
||||
begin
|
||||
revert n, induction k with k IH: intro n,
|
||||
{ reflexivity},
|
||||
{ refine _ ⬝e* loop_ptrunc_pequiv n (Ω[k] A),
|
||||
rewrite [iterated_ploop_space_succ], apply loop_pequiv_loop,
|
||||
rewrite [loopn_succ_eq], apply loop_pequiv_loop,
|
||||
refine _ ⬝e* IH (n.+1),
|
||||
rewrite succ_add_nat}
|
||||
end
|
||||
|
||||
definition iterated_loop_ptrunc_pequiv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
|
||||
definition loopn_ptrunc_pequiv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
|
||||
(p q : Ω[succ k] (ptrunc (n+succ k) A)) :
|
||||
iterated_loop_ptrunc_pequiv n (succ k) A (p ⬝ q) =
|
||||
tconcat (iterated_loop_ptrunc_pequiv n (succ k) A p)
|
||||
(iterated_loop_ptrunc_pequiv n (succ k) A q) :=
|
||||
loopn_ptrunc_pequiv n (succ k) A (p ⬝ q) =
|
||||
tconcat (loopn_ptrunc_pequiv n (succ k) A p)
|
||||
(loopn_ptrunc_pequiv n (succ k) A q) :=
|
||||
begin
|
||||
refine _ ⬝ loop_ptrunc_pequiv_con _ _,
|
||||
exact ap !loop_ptrunc_pequiv !loop_pequiv_loop_con
|
||||
end
|
||||
|
||||
definition iterated_loop_ptrunc_pequiv_inv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
|
||||
definition loopn_ptrunc_pequiv_inv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
|
||||
(p q : ptrunc n (Ω[succ k] A)) :
|
||||
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* (tconcat p q) =
|
||||
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* p ⬝
|
||||
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* q :=
|
||||
equiv.inv_preserve_binary (iterated_loop_ptrunc_pequiv n (succ k) A) concat tconcat
|
||||
(@iterated_loop_ptrunc_pequiv_con n k A) p q
|
||||
(loopn_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* (tconcat p q) =
|
||||
(loopn_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* p ⬝
|
||||
(loopn_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* q :=
|
||||
equiv.inv_preserve_binary (loopn_ptrunc_pequiv n (succ k) A) concat tconcat
|
||||
(@loopn_ptrunc_pequiv_con n k A) p q
|
||||
|
||||
definition ptrunc_functor_pcompose [constructor] {X Y Z : Type*} (n : ℕ₋₂) (g : Y →* Z)
|
||||
(f : X →* Y) : ptrunc_functor n (g ∘* f) ~* ptrunc_functor n g ∘* ptrunc_functor n f :=
|
||||
|
|
Loading…
Reference in a new issue