From 3468ab8a9fa2901b14cac7eec288237823c16a29 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Thu, 20 Sep 2018 15:53:05 +0200 Subject: [PATCH] rename nondep to constant --- hott/types/fiber.hlean | 10 ++-------- hott/types/sigma.hlean | 10 +++++----- hott/types/univ.hlean | 2 +- 3 files changed, 8 insertions(+), 14 deletions(-) diff --git a/hott/types/fiber.hlean b/hott/types/fiber.hlean index f6fa70c18..84a500a0f 100644 --- a/hott/types/fiber.hlean +++ b/hott/types/fiber.hlean @@ -165,9 +165,7 @@ namespace fiber definition fiber_pr1 (B : A → Type) (a : A) : fiber (pr1 : (Σa, B a) → A) a ≃ B a := calc fiber pr1 a ≃ Σu, u.1 = a : fiber.sigma_char - ... ≃ Σa' (b : B a'), a' = a : sigma_assoc_equiv - ... ≃ Σa' (p : a' = a), B a' : sigma_equiv_sigma_right (λa', !comm_equiv_nondep) - ... ≃ Σu, B u.1 : sigma_assoc_equiv + ... ≃ Σu, B u.1 : sigma_assoc_comm_equiv ... ≃ B a : sigma_equiv_of_is_contr_left _ _ definition sigma_fiber_equiv (f : A → B) : (Σb, fiber f b) ≃ A := @@ -266,12 +264,8 @@ namespace fiber apply sigma_equiv_sigma_right, intro x, apply sigma_comm_equiv end - ... ≃ Σ(w : Σx, x = a), Σ(p : P w.1), f w.1 p =[w.2] q - : sigma_assoc_equiv - ... ≃ Σ(p : P (center (Σx, x=a)).1), f (center (Σx, x=a)).1 p =[(center (Σx, x=a)).2] q - : sigma_equiv_of_is_contr_left ... ≃ Σ(p : P a), f a p =[idpath a] q - : equiv_of_eq idp + : sigma_sigma_eq_left ... ≃ Σ(p : P a), f a p = q : begin diff --git a/hott/types/sigma.hlean b/hott/types/sigma.hlean index 73d8e82f5..f9c8b4263 100644 --- a/hott/types/sigma.hlean +++ b/hott/types/sigma.hlean @@ -218,13 +218,13 @@ namespace sigma by induction p; induction bc; reflexivity /- The special case when the second variable doesn't depend on the first is simpler. -/ - definition sigma_transport_nondep {B : Type} {C : A → B → Type} (p : a = a') + definition sigma_transport_constant {B : Type} {C : A → B → Type} (p : a = a') (bc : Σ(b : B), C a b) : p ▸ bc = ⟨bc.1, p ▸ bc.2⟩ := by induction p; induction bc; reflexivity /- Or if the second variable contains a first component that doesn't depend on the first. -/ - definition sigma_transport2_nondep {C : A → Type} {D : Π a:A, B a → C a → Type} (p : a = a') + definition sigma_transport2_constant {C : A → Type} {D : Π a:A, B a → C a → Type} (p : a = a') (bcd : Σ(b : B a) (c : C a), D a b c) : p ▸ bcd = ⟨p ▸ bcd.1, p ▸ bcd.2.1, p ▸D2 bcd.2.2⟩ := begin induction p, induction bcd with b cd, induction cd, reflexivity @@ -250,7 +250,7 @@ namespace sigma induction s using idp_rec_on, apply idpo end - definition sigma_pathover_nondep {B : Type} {C : A → B → Type} (p : a = a') + definition sigma_pathover_constant {B : Type} {C : A → B → Type} (p : a = a') (u : Σ(b : B), C a b) (v : Σ(b : B), C a' b) (r : u.1 = v.1) (s : pathover (λx, C (prod.pr1 x) (prod.pr2 x)) u.2 (prod.prod_eq p r) v.2) : u =[p] v := begin @@ -462,7 +462,7 @@ namespace sigma proof (λp, prod.destruct p (λa b, idp)) qed proof (λs, destruct s (λa b, idp)) qed) - definition comm_equiv_nondep (A B : Type) : (Σ(a : A), B) ≃ Σ(b : B), A := + definition comm_equiv_constant (A B : Type) : (Σ(a : A), B) ≃ Σ(b : B), A := calc (Σ(a : A), B) ≃ A × B : equiv_prod ... ≃ B × A : prod_comm_equiv @@ -472,7 +472,7 @@ namespace sigma : (Σ(v : Σa, B a), C v.1) ≃ (Σ(u : Σa, C a), B u.1) := calc (Σ(v : Σa, B a), C v.1) ≃ (Σa (b : B a), C a) : sigma_assoc_equiv - ... ≃ (Σa (c : C a), B a) : sigma_equiv_sigma_right (λa, !comm_equiv_nondep) + ... ≃ (Σa (c : C a), B a) : sigma_equiv_sigma_right (λa, !comm_equiv_constant) ... ≃ (Σ(u : Σa, C a), B u.1) : sigma_assoc_equiv /- Interaction with other type constructors -/ diff --git a/hott/types/univ.hlean b/hott/types/univ.hlean index 4db075a89..1e48c8d59 100644 --- a/hott/types/univ.hlean +++ b/hott/types/univ.hlean @@ -115,7 +115,7 @@ namespace univ (λb, !sigma_assoc_equiv) ... ≃ Σb X (x : X), X = fiber f b : sigma_equiv_sigma_right (λb, sigma_equiv_sigma_right - (λX, !comm_equiv_nondep)) + (λX, !comm_equiv_constant)) ... ≃ Σb (v : ΣX, X), v.1 = fiber f b : sigma_equiv_sigma_right (λb, !sigma_assoc_equiv⁻¹ᵉ) ... ≃ Σb (Y : Type*), Y = fiber f b : sigma_equiv_sigma_right