fix(homotopy_group): remove type class proof which was synthesized
This commit is contained in:
parent
c8477d28ba
commit
34dbd6c3ae
2 changed files with 1 additions and 2 deletions
|
@ -710,7 +710,7 @@ namespace chain_complex
|
|||
end
|
||||
|
||||
definition LES_isomorphism_of_trivial_dom (n : ℕ) [H : is_succ n]
|
||||
(HX1 : is_contr (πg[n] X)) (HX2 : is_contr (πg[n+1] X)) : πg[n+1] (Y) ≃g πg[n] (pfiber f) :=
|
||||
(HX1 : is_contr (πg[n] X)) (HX2 : is_contr (πg[n+1] X)) : πg[n+1] Y ≃g πg[n] (pfiber f) :=
|
||||
begin
|
||||
induction H with n,
|
||||
refine isomorphism.mk (homomorphism_LES_of_homotopy_groups_fun (n, 2)) _,
|
||||
|
|
|
@ -152,7 +152,6 @@ namespace is_trunc
|
|||
begin
|
||||
apply whitehead_principle n, rexact H 0,
|
||||
intro a k, revert a, apply is_conn.elim -1,
|
||||
{ intro a, apply is_prop_is_equiv },
|
||||
have is_equiv (π→[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)
|
||||
∘* π→[k + 1] f ∘* π→[k + 1] (pointed_eta_pequiv A)⁻¹ᵉ*),
|
||||
begin
|
||||
|
|
Loading…
Reference in a new issue