fix(hott/path): make recursion-like definitions reducible

This commit is contained in:
Floris van Doorn 2014-11-21 23:11:57 -05:00 committed by Leonardo de Moura
parent e97b0b4e8e
commit 3523a70b4c

View file

@ -24,11 +24,11 @@ notation x ≈ y `:>`:50 A:49 := @path A x y
definition idp {A : Type} {a : A} := idpath a definition idp {A : Type} {a : A} := idpath a
-- unbased path induction -- unbased path induction
definition rec' {A : Type} {P : Π (a b : A), (a ≈ b) -> Type} definition rec' [reducible] {A : Type} {P : Π (a b : A), (a ≈ b) -> Type}
(H : Π (a : A), P a a idp) {a b : A} (p : a ≈ b) : P a b p := (H : Π (a : A), P a a idp) {a b : A} (p : a ≈ b) : P a b p :=
path.rec (H a) p path.rec (H a) p
definition rec_on' {A : Type} {P : Π (a b : A), (a ≈ b) -> Type} {a b : A} (p : a ≈ b) definition rec_on' [reducible] {A : Type} {P : Π (a b : A), (a ≈ b) -> Type} {a b : A} (p : a ≈ b)
(H : Π (a : A), P a a idp) : P a b p := (H : Π (a : A), P a a idp) : P a b p :=
path.rec (H a) p path.rec (H a) p
@ -182,7 +182,7 @@ rec_on p (take q h, h ⬝ (concat_1p _)) q
-- Transport -- Transport
-- --------- -- ---------
definition transport {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) : P y := definition transport [reducible] {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) : P y :=
path.rec_on p u path.rec_on p u
-- This idiom makes the operation right associative. -- This idiom makes the operation right associative.