feat(library/hott): add basic HoTT definitions and theorems
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
999782d89d
commit
359bfe93d5
2 changed files with 183 additions and 3 deletions
|
@ -1,2 +1,181 @@
|
||||||
definition id.{l} (A : Type.{l}) (a : A) : A := a
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||||
check ∀ x : Type.{0}, x
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
-- Author: Leonardo de Moura
|
||||||
|
|
||||||
|
inductive path {A : Type} (a : A) : A → Type :=
|
||||||
|
| refl : path a a
|
||||||
|
|
||||||
|
infix `=`:50 := path
|
||||||
|
|
||||||
|
definition transport {A : Type} {a b : A} {P : A → Type} (H1 : a = b) (H2 : P a) : P b
|
||||||
|
:= path_rec H2 H1
|
||||||
|
|
||||||
|
notation p `*(`:75 u `)` := transport p u
|
||||||
|
|
||||||
|
definition symm {A : Type} {a b : A} (p : a = b) : b = a
|
||||||
|
:= p*(refl a)
|
||||||
|
|
||||||
|
definition trans {A : Type} {a b c : A} (p1 : a = b) (p2 : b = c) : a = c
|
||||||
|
:= p2*(p1)
|
||||||
|
|
||||||
|
namespace path_notation
|
||||||
|
postfix `⁻¹`:100 := symm
|
||||||
|
infixr `⬝`:75 := trans
|
||||||
|
end
|
||||||
|
using path_notation
|
||||||
|
|
||||||
|
theorem trans_refl_right {A : Type} {x y : A} (p : x = y) : p = p ⬝ (refl y)
|
||||||
|
:= refl p
|
||||||
|
|
||||||
|
theorem trans_refl_left {A : Type} {x y : A} (p : x = y) : p = (refl x) ⬝ p
|
||||||
|
:= path_rec (trans_refl_right (refl x)) p
|
||||||
|
|
||||||
|
theorem refl_symm {A : Type} (x : A) : (refl x)⁻¹ = (refl x)
|
||||||
|
:= refl (refl x)
|
||||||
|
|
||||||
|
theorem refl_trans {A : Type} (x : A) : (refl x) ⬝ (refl x) = (refl x)
|
||||||
|
:= refl (refl x)
|
||||||
|
|
||||||
|
theorem trans_symm {A : Type} {x y : A} (p : x = y) : p ⬝ p⁻¹ = refl x
|
||||||
|
:= have q : (refl x) ⬝ (refl x)⁻¹ = refl x, from
|
||||||
|
((refl_symm x)⁻¹)*(refl_trans x),
|
||||||
|
path_rec q p
|
||||||
|
|
||||||
|
theorem symm_trans {A : Type} {x y : A} (p : x = y) : p⁻¹ ⬝ p = refl y
|
||||||
|
:= have q : (refl x)⁻¹ ⬝ (refl x) = refl x, from
|
||||||
|
((refl_symm x)⁻¹)*(refl_trans x),
|
||||||
|
path_rec q p
|
||||||
|
|
||||||
|
theorem symm_symm {A : Type} {x y : A} (p : x = y) : (p⁻¹)⁻¹ = p
|
||||||
|
:= have q : ((refl x)⁻¹)⁻¹ = refl x, from
|
||||||
|
refl (refl x),
|
||||||
|
path_rec q p
|
||||||
|
|
||||||
|
theorem trans_assoc {A : Type} {x y z w : A} (p : x = y) (q : y = z) (r : z = w) : p ⬝ (q ⬝ r) = (p ⬝ q) ⬝ r
|
||||||
|
:= have e1 : (p ⬝ q) ⬝ (refl z) = p ⬝ q, from
|
||||||
|
(trans_refl_right (p ⬝ q))⁻¹,
|
||||||
|
have e2 : q ⬝ (refl z) = q, from
|
||||||
|
(trans_refl_right q)⁻¹,
|
||||||
|
have e3 : p ⬝ (q ⬝ (refl z)) = p ⬝ q, from
|
||||||
|
e2*(refl (p ⬝ (q ⬝ (refl z)))),
|
||||||
|
path_rec (e3 ⬝ e1⁻¹) r
|
||||||
|
|
||||||
|
theorem ap {A : Type} {B : Type} (f : A → B) {a b : A} (p : a = b) : f a = f b
|
||||||
|
:= p*(refl (f a))
|
||||||
|
|
||||||
|
section
|
||||||
|
parameter {A : Type}
|
||||||
|
parameter {B : A → Type}
|
||||||
|
parameter f : Π x, B x
|
||||||
|
definition D [private] (x y : A) (p : x = y) := p*(f x) = f y
|
||||||
|
definition d [private] (x : A) : D x x (refl x)
|
||||||
|
:= refl (f x)
|
||||||
|
theorem apd {a b : A} (p : a = b) : p*(f a) = f b
|
||||||
|
:= path_rec (d a) p
|
||||||
|
end
|
||||||
|
|
||||||
|
definition homotopy {A : Type} {P : A → Type} (f g : Π x, P x)
|
||||||
|
:= Π x, f x = g x
|
||||||
|
|
||||||
|
infix `∼`:50 := homotopy
|
||||||
|
|
||||||
|
notation `assume` binders `,` r:(scoped f, f) := r
|
||||||
|
notation `take` binders `,` r:(scoped f, f) := r
|
||||||
|
|
||||||
|
section
|
||||||
|
parameter {A : Type}
|
||||||
|
parameter {B : Type}
|
||||||
|
theorem hom_refl (f : A → B) : f ∼ f
|
||||||
|
:= take x, refl (f x)
|
||||||
|
theorem hom_symm {f g : A → B} : f ∼ g → g ∼ f
|
||||||
|
:= assume h, take x, (h x)⁻¹
|
||||||
|
theorem hom_trans {f g h : A → B} : f ∼ g → g ∼ h → f ∼ h
|
||||||
|
:= assume h1 h2, take x, (h1 x) ⬝ (h2 x)
|
||||||
|
end
|
||||||
|
|
||||||
|
inductive empty : Type :=
|
||||||
|
-- empty
|
||||||
|
|
||||||
|
theorem empty_elim (c : Type) (H : empty) : c
|
||||||
|
:= empty_rec (λ e, c) H
|
||||||
|
|
||||||
|
definition not (A : Type) := A → empty
|
||||||
|
prefix `¬`:40 := not
|
||||||
|
|
||||||
|
theorem not_intro {a : Type} (H : a → empty) : ¬ a
|
||||||
|
:= H
|
||||||
|
|
||||||
|
theorem not_elim {a : Type} (H1 : ¬ a) (H2 : a) : empty
|
||||||
|
:= H1 H2
|
||||||
|
|
||||||
|
theorem absurd {a : Type} (H1 : a) (H2 : ¬ a) : empty
|
||||||
|
:= H2 H1
|
||||||
|
|
||||||
|
theorem mt {a b : Type} (H1 : a → b) (H2 : ¬ b) : ¬ a
|
||||||
|
:= assume Ha : a, absurd (H1 Ha) H2
|
||||||
|
|
||||||
|
theorem contrapos {a b : Type} (H : a → b) : ¬ b → ¬ a
|
||||||
|
:= assume Hnb : ¬ b, mt H Hnb
|
||||||
|
|
||||||
|
theorem absurd_elim {a : Type} (b : Type) (H1 : a) (H2 : ¬ a) : b
|
||||||
|
:= empty_elim b (absurd H1 H2)
|
||||||
|
|
||||||
|
inductive unit : Type :=
|
||||||
|
| star : unit
|
||||||
|
|
||||||
|
notation `⋆`:max := star
|
||||||
|
|
||||||
|
theorem absurd_not_unit (H : ¬ unit) : empty
|
||||||
|
:= absurd star H
|
||||||
|
|
||||||
|
theorem not_empty_trivial : ¬ empty
|
||||||
|
:= assume H : empty, H
|
||||||
|
|
||||||
|
theorem upun (x : unit) : x = ⋆
|
||||||
|
:= unit_rec (refl ⋆) x
|
||||||
|
|
||||||
|
inductive product (A : Type) (B : Type) : Type :=
|
||||||
|
| pair : A → B → product A B
|
||||||
|
|
||||||
|
infixr `∧`:30 := product
|
||||||
|
|
||||||
|
notation `(` h `,` t:(foldr `,` (e r, pair e r) h) `)` := t
|
||||||
|
|
||||||
|
definition pr1 {A : Type} {B : Type} (p : A ∧ B) : A
|
||||||
|
:= product_rec (λ a b, a) p
|
||||||
|
|
||||||
|
definition pr2 {A : Type} {B : Type} (p : A ∧ B) : B
|
||||||
|
:= product_rec (λ a b, b) p
|
||||||
|
|
||||||
|
theorem uppt {A : Type} {B : Type} (p : A ∧ B) : (pr1 p, pr2 p) = p
|
||||||
|
:= product_rec (λ x y, refl (x, y)) p
|
||||||
|
|
||||||
|
inductive sum (A : Type) (B : Type) : Type :=
|
||||||
|
| inl : A → sum A B
|
||||||
|
| inr : B → sum A B
|
||||||
|
|
||||||
|
infixr `∨`:25 := sum
|
||||||
|
|
||||||
|
theorem sum_elim {a : Type} {b : Type} {c : Type} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c
|
||||||
|
:= sum_rec H2 H3 H1
|
||||||
|
|
||||||
|
theorem resolve_right {a : Type} {b : Type} (H1 : a ∨ b) (H2 : ¬ a) : b
|
||||||
|
:= sum_elim H1 (assume Ha, absurd_elim b Ha H2) (assume Hb, Hb)
|
||||||
|
|
||||||
|
theorem resolve_left {a : Type} {b : Type} (H1 : a ∨ b) (H2 : ¬ b) : a
|
||||||
|
:= sum_elim H1 (assume Ha, Ha) (assume Hb, absurd_elim a Hb H2)
|
||||||
|
|
||||||
|
theorem or_flip {a : Type} {b : Type} (H : a ∨ b) : b ∨ a
|
||||||
|
:= sum_elim H (assume Ha, inr b Ha) (assume Hb, inl a Hb)
|
||||||
|
|
||||||
|
inductive bool : Type :=
|
||||||
|
| true : bool
|
||||||
|
| false : bool
|
||||||
|
|
||||||
|
theorem bool_cases (p : bool) : p = true ∨ p = false
|
||||||
|
:= bool_rec (inl _ (refl true)) (inr _ (refl false)) p
|
||||||
|
|
||||||
|
inductive Sigma {A : Type} (B : A → Type) : Type :=
|
||||||
|
| sigma : Π a, B a → Sigma B
|
||||||
|
|
||||||
|
notation `Σ` binders `,` r:(scoped P, Sigma P) := r
|
||||||
|
|
|
@ -300,7 +300,8 @@ order for the change to take effect."
|
||||||
("clr" . ("⌟")) ("clR" . ("⌋"))
|
("clr" . ("⌟")) ("clR" . ("⌋"))
|
||||||
|
|
||||||
;; Various operators/symbols.
|
;; Various operators/symbols.
|
||||||
|
("trans" . ("⬝"))
|
||||||
|
("symm" . ("⁻¹"))
|
||||||
("qed" . ("∎"))
|
("qed" . ("∎"))
|
||||||
("x" . ("×"))
|
("x" . ("×"))
|
||||||
("o" . ("∘"))
|
("o" . ("∘"))
|
||||||
|
|
Loading…
Reference in a new issue