fix(library/data/rat/basic): define pow before migrate
This commit is contained in:
parent
343b9e62c7
commit
36c7aad6ee
2 changed files with 7 additions and 8 deletions
|
@ -512,12 +512,17 @@ section migrate_algebra
|
||||||
has_decidable_eq := has_decidable_eq⦄
|
has_decidable_eq := has_decidable_eq⦄
|
||||||
|
|
||||||
local attribute rat.discrete_field [instance]
|
local attribute rat.discrete_field [instance]
|
||||||
|
|
||||||
definition divide (a b : rat) := algebra.divide a b
|
definition divide (a b : rat) := algebra.divide a b
|
||||||
infix `/` := divide
|
infix [priority rat.prio] `/` := divide
|
||||||
|
|
||||||
definition dvd (a b : rat) := algebra.dvd a b
|
definition dvd (a b : rat) := algebra.dvd a b
|
||||||
|
|
||||||
|
definition pow (a : ℚ) (n : ℕ) : ℚ := algebra.pow a n
|
||||||
|
infix [priority rat.prio] ^ := pow
|
||||||
|
|
||||||
migrate from algebra with rat
|
migrate from algebra with rat
|
||||||
replacing sub → rat.sub, divide → divide, dvd → dvd
|
replacing sub → rat.sub, divide → divide, dvd → dvd, pow → pow
|
||||||
|
|
||||||
end migrate_algebra
|
end migrate_algebra
|
||||||
|
|
||||||
|
@ -537,5 +542,4 @@ decidable.by_cases
|
||||||
by rewrite [Hc, !int.mul_div_cancel_left bnz, mul.comm]),
|
by rewrite [Hc, !int.mul_div_cancel_left bnz, mul.comm]),
|
||||||
iff.mpr (eq_div_iff_mul_eq bnz') H')
|
iff.mpr (eq_div_iff_mul_eq bnz') H')
|
||||||
|
|
||||||
|
|
||||||
end rat
|
end rat
|
||||||
|
|
|
@ -20,13 +20,11 @@ open -[coercions] nat
|
||||||
open eq.ops
|
open eq.ops
|
||||||
open pnat
|
open pnat
|
||||||
|
|
||||||
|
|
||||||
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
|
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
|
||||||
local notation 3 := subtype.tag (nat.of_num 3) dec_trivial
|
local notation 3 := subtype.tag (nat.of_num 3) dec_trivial
|
||||||
|
|
||||||
namespace s
|
namespace s
|
||||||
|
|
||||||
|
|
||||||
theorem rat_approx_l1 {s : seq} (H : regular s) :
|
theorem rat_approx_l1 {s : seq} (H : regular s) :
|
||||||
∀ n : ℕ+, ∃ q : ℚ, ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → abs (s m - q) ≤ n⁻¹ :=
|
∀ n : ℕ+, ∃ q : ℚ, ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → abs (s m - q) ≤ n⁻¹ :=
|
||||||
begin
|
begin
|
||||||
|
@ -749,9 +747,6 @@ theorem over_succ (n : ℕ) : over_seq (succ n) =
|
||||||
apply H
|
apply H
|
||||||
end
|
end
|
||||||
|
|
||||||
-- ???
|
|
||||||
theorem rat.pow_add (a : ℚ) (m : ℕ) : ∀ n, rat.pow a (m + n) = rat.pow a m * rat.pow a n := rat.pow_add a m
|
|
||||||
|
|
||||||
theorem width (n : ℕ) : over_seq n - under_seq n = (over - under) / (rat.pow 2 n) :=
|
theorem width (n : ℕ) : over_seq n - under_seq n = (over - under) / (rat.pow 2 n) :=
|
||||||
nat.induction_on n
|
nat.induction_on n
|
||||||
(by xrewrite [over_0, under_0, rat.pow_zero, rat.div_one])
|
(by xrewrite [over_0, under_0, rat.pow_zero, rat.div_one])
|
||||||
|
|
Loading…
Reference in a new issue