feat(category.limits): prove that yoneda preserves limits
This commit is contained in:
parent
46dba4ee5e
commit
36dfb61a3e
5 changed files with 90 additions and 31 deletions
|
@ -170,6 +170,16 @@ namespace functor
|
|||
{intro S, induction S with d1 S2, induction S2 with d2 P1, induction P1, reflexivity},
|
||||
end
|
||||
|
||||
definition change_fun [constructor] (F : C ⇒ D) (Fob : C → D)
|
||||
(Fhom : Π⦃c c' : C⦄ (f : c ⟶ c'), Fob c ⟶ Fob c') (p : F = Fob) (q : F =[p] Fhom) : C ⇒ D :=
|
||||
functor.mk
|
||||
Fob
|
||||
Fhom
|
||||
proof abstract λa, transporto (λFo (Fh : Π⦃c c'⦄, _), Fh (ID a) = ID (Fo a))
|
||||
q (respect_id F a) end qed
|
||||
proof abstract λa b c g f, transporto (λFo (Fh : Π⦃c c'⦄, _), Fh (g ∘ f) = Fh g ∘ Fh f)
|
||||
q (respect_comp F g f) end qed
|
||||
|
||||
section
|
||||
local attribute precategory.is_hset_hom [priority 1001]
|
||||
local attribute trunctype.struct [priority 1] -- remove after #842 is closed
|
||||
|
|
|
@ -26,13 +26,13 @@ namespace functor
|
|||
|
||||
local abbreviation Fhom [constructor] := @functor_curry_hom
|
||||
|
||||
theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id :=
|
||||
nat_trans_eq (λd, respect_id F _)
|
||||
theorem functor_curry_id (c : C) : Fhom F (ID c) = 1 :=
|
||||
nat_trans_eq (λd, respect_id F (c, d))
|
||||
|
||||
theorem functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c')
|
||||
: Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f :=
|
||||
begin
|
||||
apply @nat_trans_eq,
|
||||
apply nat_trans_eq,
|
||||
intro d, calc
|
||||
natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : by esimp
|
||||
... = F (f' ∘ f, id ∘ id) : by rewrite id_id
|
||||
|
@ -41,12 +41,36 @@ namespace functor
|
|||
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp
|
||||
end
|
||||
|
||||
definition functor_curry [reducible] [constructor] : C ⇒ E ^c D :=
|
||||
definition functor_curry [constructor] : C ⇒ E ^c D :=
|
||||
functor.mk (functor_curry_ob F)
|
||||
(functor_curry_hom F)
|
||||
(functor_curry_id F)
|
||||
(functor_curry_comp F)
|
||||
|
||||
/- currying a functor, flipping the arguments -/
|
||||
definition functor_curry_rev_ob [reducible] [constructor] (d : D) : C ⇒ E :=
|
||||
F ∘f (1 ×f constant_functor C d)
|
||||
|
||||
definition functor_curry_rev_hom [constructor] ⦃d d' : D⦄ (g : d ⟶ d')
|
||||
: functor_curry_rev_ob F d ⟹ functor_curry_rev_ob F d' :=
|
||||
F ∘fn (1 ×n constant_nat_trans C g)
|
||||
|
||||
local abbreviation Fhomr [constructor] := @functor_curry_rev_hom
|
||||
theorem functor_curry_rev_id (d : D) : Fhomr F (ID d) = nat_trans.id :=
|
||||
nat_trans_eq (λc, respect_id F (c, d))
|
||||
|
||||
theorem functor_curry_rev_comp ⦃d d' d'' : D⦄ (g' : d' ⟶ d'') (g : d ⟶ d')
|
||||
: Fhomr F (g' ∘ g) = Fhomr F g' ∘n Fhomr F g :=
|
||||
begin
|
||||
apply nat_trans_eq, esimp, intro c, rewrite [-id_id at {1}], apply respect_comp F
|
||||
end
|
||||
|
||||
definition functor_curry_rev [constructor] : D ⇒ E ^c C :=
|
||||
functor.mk (functor_curry_rev_ob F)
|
||||
(functor_curry_rev_hom F)
|
||||
(functor_curry_rev_id F)
|
||||
(functor_curry_rev_comp F)
|
||||
|
||||
/- uncurrying a functor -/
|
||||
|
||||
definition functor_uncurry_ob [reducible] (p : C ×c D) : E :=
|
||||
|
@ -80,7 +104,7 @@ namespace functor
|
|||
by rewrite [square_prepostcompose (!naturality⁻¹ᵖ) _ _]
|
||||
... = Ghom G f' ∘ Ghom G f : by esimp
|
||||
|
||||
definition functor_uncurry [reducible] [constructor] : C ×c D ⇒ E :=
|
||||
definition functor_uncurry [constructor] : C ×c D ⇒ E :=
|
||||
functor.mk (functor_uncurry_ob G)
|
||||
(functor_uncurry_hom G)
|
||||
(functor_uncurry_id G)
|
||||
|
@ -191,16 +215,20 @@ namespace functor
|
|||
(λ x y z g f, abstract eq_of_homotopy (by intros; apply @hom_functor_assoc) end)
|
||||
|
||||
-- the functor hom(-, c)
|
||||
definition hom_functor_left.{u v} [constructor] (C : Precategory.{u v}) (c : C)
|
||||
definition hom_functor_left.{u v} [constructor] {C : Precategory.{u v}} (c : C)
|
||||
: Cᵒᵖ ⇒ set.{v} :=
|
||||
hom_functor C ∘f (1 ×f constant_functor Cᵒᵖ c)
|
||||
functor_curry_rev_ob !hom_functor c
|
||||
|
||||
-- the functor hom(c, -)
|
||||
definition hom_functor_right.{u v} [constructor] (C : Precategory.{u v}) (c : C)
|
||||
definition hom_functor_right.{u v} [constructor] {C : Precategory.{u v}} (c : C)
|
||||
: C ⇒ set.{v} :=
|
||||
hom_functor C ∘f (constant_functor C c ×f 1)
|
||||
functor_curry_ob !hom_functor c
|
||||
|
||||
definition nat_trans_hom_functor_left [constructor] {C : Precategory}
|
||||
⦃c c' : C⦄ (f : c ⟶ c') : hom_functor_left c ⟹ hom_functor_left c' :=
|
||||
functor_curry_rev_hom !hom_functor f
|
||||
|
||||
-- the yoneda embedding itself is defined in [yoneda].
|
||||
end
|
||||
|
||||
|
||||
|
|
|
@ -24,9 +24,18 @@ namespace yoneda
|
|||
(C : Precategory) : Cᵒᵖ ⇒ cset ^c C :=
|
||||
functor_curry !hom_functor
|
||||
|
||||
/-
|
||||
we use (change_fun) to make sure that (to_fun_ob (yoneda_embedding C) c) will reduce to
|
||||
(hom_functor_left c) instead of (functor_curry_rev_ob (hom_functor C) c)
|
||||
-/
|
||||
definition yoneda_embedding [constructor] (C : Precategory) : C ⇒ cset ^c Cᵒᵖ :=
|
||||
functor_curry (!hom_functor ∘f !prod_flip_functor)
|
||||
|
||||
--(functor_curry_rev !hom_functor)
|
||||
change_fun
|
||||
(functor_curry_rev !hom_functor)
|
||||
hom_functor_left
|
||||
nat_trans_hom_functor_left
|
||||
idp
|
||||
idpo
|
||||
|
||||
notation `ɏ` := yoneda_embedding _
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ Functors preserving limits
|
|||
|
||||
import .colimits ..functor.yoneda
|
||||
|
||||
open functor yoneda is_trunc nat_trans
|
||||
open eq functor yoneda is_trunc nat_trans
|
||||
|
||||
namespace category
|
||||
|
||||
|
@ -50,33 +50,45 @@ namespace category
|
|||
|
||||
/- yoneda preserves existing limits -/
|
||||
|
||||
definition preserves_existing_limits_yoneda_embedding_lemma [constructor] (x : cone_obj F)
|
||||
[H : is_terminal x] {G : Cᵒᵖ ⇒ cset} (η : constant_functor I G ⟹ ɏ ∘f F) :
|
||||
G ⟹ to_fun_ob ɏ (cone_to_obj x) :=
|
||||
local attribute Category.to.precategory category.to_precategory [constructor]
|
||||
|
||||
definition preserves_existing_limits_yoneda_embedding_lemma [constructor] (y : cone_obj F)
|
||||
[H : is_terminal y] {G : Cᵒᵖ ⇒ cset} (η : constant_functor I G ⟹ ɏ ∘f F) :
|
||||
G ⟹ hom_functor_left (cone_to_obj y) :=
|
||||
begin
|
||||
fapply nat_trans.mk: esimp,
|
||||
{ intro c x, fapply to_hom_limit,
|
||||
{ intro i, exact η i c x},
|
||||
{ intro i j k, exact sorry}},
|
||||
{ intro c c' f, apply eq_of_homotopy, intro x, exact sorry}
|
||||
{ exact abstract begin
|
||||
intro i j k,
|
||||
exact !id_right⁻¹ ⬝ !assoc⁻¹ ⬝ ap0100 natural_map (naturality η k) c x end end
|
||||
}},
|
||||
-- [BUG] abstracting here creates multiple lemmas proving this fact
|
||||
{ intro c c' f, apply eq_of_homotopy, intro x,
|
||||
rewrite [id_left], apply to_eq_hom_limit, intro i,
|
||||
refine !assoc ⬝ _, rewrite to_hom_limit_commute,
|
||||
refine _ ⬝ ap10 (naturality (η i) f) x, rewrite [▸*, id_left]}
|
||||
-- abstracting here fails
|
||||
end
|
||||
-- print preserves_existing_limits_yoneda_embedding_lemma_11
|
||||
|
||||
theorem preserves_existing_limits_yoneda_embedding (C : Precategory)
|
||||
: preserves_existing_limits (yoneda_embedding C) :=
|
||||
begin
|
||||
intro I F H Gη, induction H with x H, induction Gη with G η, esimp at *,
|
||||
intro I F H Gη, induction H with y H, induction Gη with G η, esimp at *,
|
||||
assert lem : Π (i : carrier I),
|
||||
nat_trans_hom_functor_left (natural_map (cone_to_nat y) i)
|
||||
∘n preserves_existing_limits_yoneda_embedding_lemma y η = natural_map η i,
|
||||
{ intro i, apply nat_trans_eq, intro c, apply eq_of_homotopy, intro x,
|
||||
esimp, refine !assoc ⬝ !id_right ⬝ !to_hom_limit_commute},
|
||||
fapply is_contr.mk,
|
||||
{ fapply cone_hom.mk: esimp,
|
||||
{ exact sorry
|
||||
-- fapply nat_trans.mk: esimp,
|
||||
-- { intro c x, esimp [yoneda_embedding], fapply to_hom_limit,
|
||||
-- { apply has_terminal_object.is_terminal}, --this should be solved by type class res.
|
||||
-- { intro i, induction dη with d η, esimp at *, },
|
||||
-- { intro i j k, }},
|
||||
-- { }
|
||||
},
|
||||
{ exact sorry}},
|
||||
{ exact sorry}
|
||||
{ fapply cone_hom.mk,
|
||||
{ exact preserves_existing_limits_yoneda_embedding_lemma y η},
|
||||
{ exact lem}},
|
||||
{ intro v, apply cone_hom_eq, esimp, apply nat_trans_eq, esimp, intro c,
|
||||
apply eq_of_homotopy, intro x, refine (to_eq_hom_limit _ _)⁻¹,
|
||||
intro i, refine !id_right⁻¹ ⬝ !assoc⁻¹ ⬝ _,
|
||||
exact ap0100 natural_map (cone_to_eq v i) c x}
|
||||
end
|
||||
|
||||
end category
|
||||
|
|
|
@ -226,7 +226,7 @@ namespace eq
|
|||
variable (C)
|
||||
definition transporto (r : b =[p] b₂) (c : C b) : C b₂ :=
|
||||
by induction r;exact c
|
||||
infix `▸o`:75 := transporto _
|
||||
infix ` ▸o `:75 := transporto _
|
||||
|
||||
definition fn_tro_eq_tro_fn (C' : Π ⦃a : A⦄, B a → Type) (q : b =[p] b₂)
|
||||
(f : Π(b : B a), C b → C' b) (c : C b) : f b (q ▸o c) = (q ▸o (f b c)) :=
|
||||
|
@ -316,7 +316,7 @@ namespace eq
|
|||
(s : r = r') (s₂ : r₂ = r₂') : r ⬝o r₂ = r' ⬝o r₂' :=
|
||||
by induction s; induction s₂; reflexivity
|
||||
|
||||
infixl `◾o`:75 := concato2
|
||||
infixl ` ◾o `:75 := concato2
|
||||
postfix [parsing_only] `⁻²ᵒ`:(max+10) := inverseo2 --this notation is abusive, should we use it?
|
||||
|
||||
end eq
|
||||
|
|
Loading…
Reference in a new issue