From 3887efa7c13fb4103a7eb75cad3c194de8a31fd7 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Sat, 19 Mar 2016 12:09:44 -0400 Subject: [PATCH] feat(hott): some renamings in init.path --- hott/init/path.hlean | 21 +++++++++++---------- hott/types/pointed.hlean | 2 +- 2 files changed, 12 insertions(+), 11 deletions(-) diff --git a/hott/init/path.hlean b/hott/init/path.hlean index b60a7defc..6406a00b1 100644 --- a/hott/init/path.hlean +++ b/hott/init/path.hlean @@ -257,6 +257,7 @@ namespace eq definition ap11 {f g : A → B} (H : f = g) {x y : A} (p : x = y) : f x = g y := by induction H; exact ap f p + -- [apd] is defined in init.pathover using pathover instead of an equality with transport. definition apdt [unfold 6] (f : Πa, P a) {x y : A} (p : x = y) : p ▸ f x = f y := by induction p; reflexivity @@ -443,7 +444,7 @@ namespace eq p⁻¹ ▸ p ▸ z = z := (con_tr p p⁻¹ z)⁻¹ ⬝ ap (λr, transport P r z) (con.right_inv p) - definition con_tr_lemma {P : A → Type} + definition con_con_tr {P : A → Type} {x y z w : A} (p : x = y) (q : y = z) (r : z = w) (u : P x) : ap (λe, e ▸ u) (con.assoc' p q r) ⬝ (con_tr (p ⬝ q) r u) ⬝ ap (transport P r) (con_tr p q u) @@ -633,7 +634,7 @@ namespace eq idp ◾ h = whisker_left idp h :> (idp ⬝ p = idp ⬝ q) := idp - definition inverse2_concat2 {p p' : x = y} (h : p = p') + definition inv2_con2 {p p' : x = y} (h : p = p') : h⁻² ◾ h = con.left_inv p ⬝ (con.left_inv p')⁻¹ := by induction h; induction p; reflexivity @@ -643,11 +644,11 @@ namespace eq (a ◾ c) ⬝ (b ◾ d) = (a ⬝ b) ◾ (c ⬝ d) := by induction d; induction c; induction b;induction a; reflexivity - definition concat2_eq_rl {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z} + definition con2_eq_rl {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z} (a : p = p') (b : q = q') : a ◾ b = whisker_right a q ⬝ whisker_left p' b := by induction b; induction a; reflexivity - definition concat2_eq_lf {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z} + definition con2_eq_lf {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z} (a : p = p') (b : q = q') : a ◾ b = whisker_left p b ⬝ whisker_right a q' := by induction b; induction a; reflexivity @@ -671,25 +672,25 @@ namespace eq con.assoc' p idp q ⬝ whisker_right (con_idp p) q = whisker_left p (idp_con q) := by induction q; induction p; reflexivity - definition eckmann_hilton {x:A} (p q : idp = idp :> x = x) : p ⬝ q = q ⬝ p := + definition eckmann_hilton (p q : idp = idp :> a = a) : p ⬝ q = q ⬝ p := begin refine (whisker_right_idp p ◾ whisker_left_idp2 q)⁻¹ ⬝ _, refine !whisker_right_con_whisker_left ⬝ _, refine !whisker_left_idp2 ◾ !whisker_right_idp end - definition concat_eq_concat2 {A : Type} {a : A} (p q : idp = idp :> a = a) : p ⬝ q = p ◾ q := + definition con_eq_con2 (p q : idp = idp :> a = a) : p ⬝ q = p ◾ q := begin refine (whisker_right_idp p ◾ whisker_left_idp2 q)⁻¹ ⬝ _, - exact !concat2_eq_rl⁻¹ + exact !con2_eq_rl⁻¹ end - definition inverse_eq_inverse2 {A : Type} {a : A} (p : idp = idp :> a = a) : p⁻¹ = p⁻² := + definition inv_eq_inv2 (p : idp = idp :> a = a) : p⁻¹ = p⁻² := begin apply eq.cancel_right p, refine !con.left_inv ⬝ _, - refine _ ⬝ !concat_eq_concat2⁻¹, - exact !inverse2_concat2⁻¹, + refine _ ⬝ !con_eq_con2⁻¹, + exact !inv2_con2⁻¹, end -- The action of functions on 2-dimensional paths diff --git a/hott/types/pointed.hlean b/hott/types/pointed.hlean index 3453f64e8..019419897 100644 --- a/hott/types/pointed.hlean +++ b/hott/types/pointed.hlean @@ -428,7 +428,7 @@ namespace pointed definition ap1_pinverse {A : Type*} : ap1 (@pinverse A) ~* @pinverse (Ω A) := begin fapply phomotopy.mk, - { intro p, esimp, refine !idp_con ⬝ _, exact !inverse_eq_inverse2⁻¹ }, + { intro p, esimp, refine !idp_con ⬝ _, exact !inv_eq_inv2⁻¹ }, { reflexivity} end