feat(library/standard/data/nat/order): add le_decidable, lt_decidable, ge_decidable, gt_decidable

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-08-20 21:41:43 -07:00
parent 42c2fef0f2
commit 38f46b1290

View file

@ -2,11 +2,12 @@
--- Released under Apache 2.0 license as described in the file LICENSE. --- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Floris van Doorn --- Author: Floris van Doorn
import .basic import .basic logic.classes.decidable
import tools.fake_simplifier import tools.fake_simplifier
using nat eq_ops tactic using nat eq_ops tactic
using fake_simplifier using fake_simplifier
using decidable (decidable inl inr)
-- TODO: move these to logic.connectives -- TODO: move these to logic.connectives
theorem or_imp_or_left {a b c : Prop} (H1 : a b) (H2 : a → c) : c b := theorem or_imp_or_left {a b c : Prop} (H1 : a b) (H2 : a → c) : c b :=
@ -237,6 +238,26 @@ le_trans (mul_le_right H1 m) (mul_le_left H2 k)
-- mul_le_[left|right]_inv below -- mul_le_[left|right]_inv below
theorem le_decidable [instance] (n m : ) : decidable (n ≤ m) :=
have general : ∀n, decidable (n ≤ m), from
rec_on m
(take n,
rec_on n
(inl (le_refl 0))
(take m iH, inr (not_succ_zero_le m)))
(take (m' : ) (iH1 : ∀n, decidable (n ≤ m')) (n : ),
rec_on n
(inl (zero_le (succ m')))
(take (n' : ) (iH2 : decidable (n' ≤ succ m')),
have d1 : decidable (n' ≤ m'), from iH1 n',
decidable.rec_on d1
(assume Hp : n' ≤ m', inl (succ_le Hp))
(assume Hn : ¬ n' ≤ m',
have H : ¬ succ n' ≤ succ m', from
assume Hle : succ n' ≤ succ m',
absurd (succ_le_cancel Hle) Hn,
inr H))),
general n
-- Less than, Greater than, Greater than or equal -- Less than, Greater than, Greater than or equal
-- ---------------------------------------------- -- ----------------------------------------------
@ -415,6 +436,15 @@ resolve_left (le_or_gt m n) H
theorem not_le_imp_gt {n m : } (H : ¬ n ≤ m) : n > m := theorem not_le_imp_gt {n m : } (H : ¬ n ≤ m) : n > m :=
resolve_right (le_or_gt n m) H resolve_right (le_or_gt n m) H
theorem lt_decidable [instance] (n m : ) : decidable (n < m) :=
le_decidable _ _
theorem gt_decidable [instance] (n m : ) : decidable (n > m) :=
le_decidable _ _
theorem ge_decidable [instance] (n m : ) : decidable (n ≥ m) :=
le_decidable _ _
-- Note: interaction with multiplication under "positivity" -- Note: interaction with multiplication under "positivity"
-- ### misc -- ### misc