refactor(library/*): do various renamings

This commit is contained in:
Jeremy Avigad 2015-05-25 22:13:23 +10:00 committed by Leonardo de Moura
parent a64c0ea845
commit 39129f112b
14 changed files with 25 additions and 21 deletions

View file

@ -14,5 +14,6 @@ Algebraic structures.
* [ordered_group](ordered_group.lean) * [ordered_group](ordered_group.lean)
* [ordered_ring](ordered_ring.lean) * [ordered_ring](ordered_ring.lean)
* [field](field.lean) * [field](field.lean)
* [ordered_field](ordered_field.lean)
* [category](category/category.md) : category theory * [category](category/category.md) : category theory

View file

@ -111,9 +111,9 @@ namespace category
mk (λa b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b)) mk (λa b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) ) (λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
(λ a, (id,id)) (λ a, (id,id))
(λ a b c d h g f, pair_eq !assoc !assoc ) (λ a b c d h g f, pair_eq !assoc !assoc )
(λ a b f, prod.equal !id_left !id_left ) (λ a b f, prod.eq !id_left !id_left )
(λ a b f, prod.equal !id_right !id_right) (λ a b f, prod.eq !id_right !id_right)
definition Prod_category [reducible] (C D : Category) : Category := Mk (prod_category C D) definition Prod_category [reducible] (C D : Category) : Category := Mk (prod_category C D)
end end
@ -204,9 +204,9 @@ namespace category
... = slice.ob_hom a : {slice.commute f} ... = slice.ob_hom a : {slice.commute f}
qed)) qed))
(λ a, sigma.mk id !id_right) (λ a, sigma.mk id !id_right)
(λ a b c d h g f, dpair_eq !assoc !proof_irrel) (λ a b c d h g f, dpair_eq !assoc !proof_irrel)
(λ a b f, sigma.equal !id_left !proof_irrel) (λ a b f, sigma.eq !id_left !proof_irrel)
(λ a b f, sigma.equal !id_right !proof_irrel) (λ a b f, sigma.eq !id_right !proof_irrel)
-- We use !proof_irrel instead of rfl, to give the unifier an easier time -- We use !proof_irrel instead of rfl, to give the unifier an easier time
-- definition slice_category {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom b c) -- definition slice_category {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom b c)

View file

@ -27,6 +27,7 @@ Constructors:
* [squash](squash.lean) : propositional truncation * [squash](squash.lean) : propositional truncation
* [list](list/list.md) * [list](list/list.md)
* [finset](finset/finset.md) : finite sets * [finset](finset/finset.md) : finite sets
* [stream](stream.lean)
* [set](set/set.md) * [set](set/set.md)
* [vector](vector.lean) * [vector](vector.lean)

View file

@ -4,4 +4,4 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad Author: Jeremy Avigad
-/ -/
import .empty .unit .bool .num .string .nat .int .rat .fintype import .empty .unit .bool .num .string .nat .int .rat .fintype
import .prod .sum .sigma .option .subtype .quotient .list .vector .finset .set import .prod .sum .sigma .option .subtype .quotient .list .vector .finset .set .stream

View file

@ -613,7 +613,8 @@ or.elim (eq_zero_or_pos m)
theorem eq_zero_of_gcd_eq_zero_right {m n : } (H : gcd m n = 0) : n = 0 := theorem eq_zero_of_gcd_eq_zero_right {m n : } (H : gcd m n = 0) : n = 0 :=
eq_zero_of_gcd_eq_zero_left (!gcd.comm ▸ H) eq_zero_of_gcd_eq_zero_left (!gcd.comm ▸ H)
theorem gcd_div {m n k : } (H1 : (k m)) (H2 : (k n)) : gcd (m div k) (n div k) = gcd m n div k := theorem gcd_div {m n k : } (H1 : (k m)) (H2 : (k n)) :
gcd (m div k) (n div k) = gcd m n div k :=
or.elim (eq_zero_or_pos k) or.elim (eq_zero_or_pos k)
(assume H3 : k = 0, (assume H3 : k = 0,
calc calc

View file

@ -342,7 +342,8 @@ nat.strong_induction_on a
/- pos -/ /- pos -/
theorem by_cases_zero_pos {P : → Prop} (y : ) (H0 : P 0) (H1 : ∀ {y : nat}, y > 0 → P y) : P y := theorem by_cases_zero_pos {P : → Prop} (y : ) (H0 : P 0) (H1 : ∀ {y : nat}, y > 0 → P y) :
P y :=
nat.cases_on y H0 (take y, H1 !succ_pos) nat.cases_on y H0 (take y, H1 !succ_pos)
theorem eq_zero_or_pos (n : ) : n = 0 n > 0 := theorem eq_zero_or_pos (n : ) : n = 0 n > 0 :=

View file

@ -12,7 +12,7 @@ namespace prod
theorem pair_eq : a₁ = a₂ → b₁ = b₂ → (a₁, b₁) = (a₂, b₂) := theorem pair_eq : a₁ = a₂ → b₁ = b₂ → (a₁, b₁) = (a₂, b₂) :=
assume H1 H2, H1 ▸ H2 ▸ rfl assume H1 H2, H1 ▸ H2 ▸ rfl
protected theorem equal {p₁ p₂ : prod A B} : pr₁ p₁ = pr₁ p₂ → pr₂ p₁ = pr₂ p₂ → p₁ = p₂ := protected theorem eq {p₁ p₂ : prod A B} : pr₁ p₁ = pr₁ p₂ → pr₂ p₁ = pr₂ p₂ → p₁ = p₂ :=
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, pair_eq H₁ H₂)) destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, pair_eq H₁ H₂))
protected definition is_inhabited [instance] [h₁ : inhabited A] [h₂ : inhabited B] : inhabited (prod A B) := protected definition is_inhabited [instance] [h₁ : inhabited A] [h₂ : inhabited B] : inhabited (prod A B) :=

View file

@ -284,7 +284,7 @@ intro
... = f (f a) : {Ha⁻¹} ... = f (f a) : {Ha⁻¹}
... = f a : representative_map_idempotent H1 H2 a ... = f a : representative_map_idempotent H1 H2 a
... = elt_of u : Ha, ... = elt_of u : Ha,
show abs (elt_of u) = u, from subtype.equal H) show abs (elt_of u) = u, from subtype.eq H)
(take u : image f, (take u : image f,
show R (elt_of u) (elt_of u), from show R (elt_of u) (elt_of u), from
obtain (a : A) (Ha : f a = elt_of u), from image_elt_of u, obtain (a : A) (Ha : f a = elt_of u), from image_elt_of u,

View file

@ -148,7 +148,7 @@ have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from
pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by simp pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by simp
... = f (pr2 v) e : by simp ... = f (pr2 v) e : by simp
... = pr2 v : Hid (pr2 v)), ... = pr2 v : Hid (pr2 v)),
prod.equal Hx Hy prod.eq Hx Hy
theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a : A, f e a = a) theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a : A, f e a = a)
(v : A × A) : map_pair2 f (pair e e) v = v := (v : A × A) : map_pair2 f (pair e e) v = v :=
@ -162,6 +162,6 @@ have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from
pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by simp pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by simp
... = f e (pr2 v) : by simp ... = f e (pr2 v) : by simp
... = pr2 v : Hid (pr2 v), ... = pr2 v : Hid (pr2 v),
prod.equal Hx Hy prod.eq Hx Hy
end quotient end quotient

View file

@ -19,7 +19,7 @@ namespace sigma
(HB : B == B') (Ha : a == a') (Hb : b == b') : ⟨a, b⟩ == ⟨a', b'⟩ := (HB : B == B') (Ha : a == a') (Hb : b == b') : ⟨a, b⟩ == ⟨a', b'⟩ :=
hcongr_arg4 @mk (heq.type_eq Ha) HB Ha Hb hcongr_arg4 @mk (heq.type_eq Ha) HB Ha Hb
protected theorem hequal {p : Σa : A, B a} {p' : Σa' : A', B' a'} (HB : B == B') : protected theorem heq {p : Σa : A, B a} {p' : Σa' : A', B' a'} (HB : B == B') :
∀(H₁ : p.1 == p'.1) (H₂ : p.2 == p'.2), p == p' := ∀(H₁ : p.1 == p'.1) (H₂ : p.2 == p'.2), p == p' :=
destruct p (take a₁ b₁, destruct p' (take a₂ b₂ H₁ H₂, dpair_heq HB H₁ H₂)) destruct p (take a₁ b₁, destruct p' (take a₂ b₂ H₁ H₂, dpair_heq HB H₁ H₂))

View file

@ -22,7 +22,7 @@ namespace subtype
theorem tag_eq {a1 a2 : A} {H1 : P a1} {H2 : P a2} (H3 : a1 = a2) : tag a1 H1 = tag a2 H2 := theorem tag_eq {a1 a2 : A} {H1 : P a1} {H2 : P a2} (H3 : a1 = a2) : tag a1 H1 = tag a2 H2 :=
eq.subst H3 (take H2, tag_irrelevant H1 H2) H2 eq.subst H3 (take H2, tag_irrelevant H1 H2) H2
protected theorem equal {a1 a2 : {x | P x}} : ∀(H : elt_of a1 = elt_of a2), a1 = a2 := protected theorem eq {a1 a2 : {x | P x}} : ∀(H : elt_of a1 = elt_of a2), a1 = a2 :=
destruct a1 (take x1 H1, destruct a2 (take x2 H2 H, tag_eq H)) destruct a1 (take x1 H1, destruct a2 (take x2 H2 H, tag_eq H))
protected definition is_inhabited [instance] {a : A} (H : P a) : inhabited {x | P x} := protected definition is_inhabited [instance] {a : A} (H : P a) : inhabited {x | P x} :=

View file

@ -8,18 +8,18 @@ import logic.eq
namespace unit namespace unit
notation `⋆` := star notation `⋆` := star
protected theorem equal (a b : unit) : a = b := protected theorem eq (a b : unit) : a = b :=
unit.rec_on a (unit.rec_on b rfl) unit.rec_on a (unit.rec_on b rfl)
theorem eq_star (a : unit) : a = star := theorem eq_star (a : unit) : a = star :=
unit.equal a star unit.eq a star
protected theorem subsingleton [instance] : subsingleton unit := protected theorem subsingleton [instance] : subsingleton unit :=
subsingleton.intro (λ a b, unit.equal a b) subsingleton.intro (λ a b, unit.eq a b)
protected definition is_inhabited [instance] : inhabited unit := protected definition is_inhabited [instance] : inhabited unit :=
inhabited.mk unit.star inhabited.mk unit.star
protected definition has_decidable_eq [instance] : decidable_eq unit := protected definition has_decidable_eq [instance] : decidable_eq unit :=
take (a b : unit), decidable.inl (unit.equal a b) take (a b : unit), decidable.inl (unit.eq a b)
end unit end unit

View file

@ -48,7 +48,7 @@ namespace quot
protected lemma indep_coherent (f : Π a, B ⟦a⟧) protected lemma indep_coherent (f : Π a, B ⟦a⟧)
(H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b)
: ∀ a b, a ≈ b → quot.indep f a = quot.indep f b := : ∀ a b, a ≈ b → quot.indep f a = quot.indep f b :=
λa b e, sigma.equal (sound e) (H a b e) λa b e, sigma.eq (sound e) (H a b e)
protected lemma lift_indep_pr1 protected lemma lift_indep_pr1
(f : Π a, B ⟦a⟧) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b) (f : Π a, B ⟦a⟧) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b)

View file

@ -30,7 +30,7 @@ namespace sigma
theorem dpair_eq : ∀ {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂), eq.rec_on H₁ b₁ = b₂ → ⟨a₁, b₁⟩ = ⟨a₂, b₂⟩ theorem dpair_eq : ∀ {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂), eq.rec_on H₁ b₁ = b₂ → ⟨a₁, b₁⟩ = ⟨a₂, b₂⟩
| a₁ a₁ b₁ b₁ rfl rfl := rfl | a₁ a₁ b₁ b₁ rfl rfl := rfl
protected theorem equal {p₁ p₂ : Σa : A, B a} : protected theorem eq {p₁ p₂ : Σa : A, B a} :
∀(H₁ : p₁.1 = p₂.1) (H₂ : eq.rec_on H₁ p₁.2 = p₂.2), p₁ = p₂ := ∀(H₁ : p₁.1 = p₂.1) (H₂ : eq.rec_on H₁ p₁.2 = p₂.2), p₁ = p₂ :=
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, dpair_eq H₁ H₂)) destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, dpair_eq H₁ H₂))