From 393cefcf97c90368a3b9aa020deaf8aba6211d19 Mon Sep 17 00:00:00 2001 From: Rob Lewis Date: Tue, 26 May 2015 12:05:53 +1000 Subject: [PATCH] feat(library/data/real): define real numbers, prove they form a commutative ring --- library/data/real/basic.lean | 1231 ++++++++++++++++++++++++++++++++ library/data/real/default.lean | 6 + library/data/real/real.md | 6 + 3 files changed, 1243 insertions(+) create mode 100644 library/data/real/basic.lean create mode 100644 library/data/real/default.lean create mode 100644 library/data/real/real.md diff --git a/library/data/real/basic.lean b/library/data/real/basic.lean new file mode 100644 index 000000000..984d33f9e --- /dev/null +++ b/library/data/real/basic.lean @@ -0,0 +1,1231 @@ +/- +Copyright (c) 2014 Robert Y. Lewis. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Author: Robert Y. Lewis +The real numbers, constructed as equivalence classes of Cauchy sequences of rationals. +This construction follows Bishop and Bridges (1985). + +To do: + o Break positive naturals into their own file and fill in sorry's + o Fill in sorrys for helper lemmas that will not be handled by simplifier + o Rename things and possibly make theorems private +-/ + +import algebra.ordered_field data.nat data.rat.order +open nat eq eq.ops +open -[coercions] rat +---------------------------------------------------------------------------------------------------- + +----------------------------------------------- +-- positive naturals + +inductive pnat : Type := + pos : Π n : nat, n > 0 → pnat + +notation `ℕ+` := pnat + +definition nat_of_pnat (p : pnat) : ℕ := + pnat.rec_on p (λ n H, n) +local postfix `~` : std.prec.max_plus := nat_of_pnat + +theorem nat_of_pnat_pos (p : pnat) : nat_of_pnat p > 0 := + pnat.rec_on p (λ n H, H) + +definition add (p q : pnat) : pnat := + pnat.pos (p~ + q~) (nat.add_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q)) +infix `+` := add + +definition mul (p q : pnat) : pnat := + pnat.pos (p~ * q~) (nat.mul_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q)) +infix `*` := mul + +definition le (p q : pnat) := p~ ≤ q~ +infix `≤` := le +notation p `≥` q := q ≤ p + +definition lt (p q : pnat) := p~ < q~ +infix `<` := lt + +theorem pnat_le_decidable [instance] (p q : pnat) : decidable (p ≤ q) := + pnat.rec_on p (λ n H, pnat.rec_on q + (λ m H2, if Hl : n ≤ m then decidable.inl Hl else decidable.inr Hl)) + +theorem pnat_lt_decidable [instance] {p q : pnat} : decidable (p < q) := + pnat.rec_on p (λ n H, pnat.rec_on q + (λ m H2, if Hl : n < m then decidable.inl Hl else decidable.inr Hl)) + +theorem ple.trans {p q r : pnat} (H1 : p ≤ q) (H2 : q ≤ r) : p ≤ r := nat.le.trans H1 H2 + +definition max (p q : pnat) := + pnat.pos (nat.max (p~) (q~)) (nat.lt_of_lt_of_le (!nat_of_pnat_pos) (!le_max_right)) + +theorem max_right (a b : ℕ+) : max a b ≥ b := !le_max_right +theorem max_left (a b : ℕ+) : max a b ≥ a := !le_max_left +theorem max_eq_right {a b : ℕ+} (H : a < b) : max a b = b := sorry -- nat.max_eq_right H +theorem max_eq_left {a b : ℕ+} (H : ¬ a < b) : max a b = a := sorry +theorem pnat.le_of_lt {a b : ℕ+} (H : a < b) : a ≤ b := nat.le_of_lt H +theorem pnat.not_lt_of_le {a b : ℕ+} (H : a ≤ b) : ¬ (b < a) := nat.not_lt_of_ge H +theorem pnat.le_of_not_lt {a b : ℕ+} (H : ¬ a < b) : b ≤ a := nat.le_of_not_gt H +theorem pnat.eq_of_le_of_ge {a b : ℕ+} (H1 : a ≤ b) (H2 : b ≤ a) : a = b := sorry + +theorem pnat.le.refl (a : ℕ+) : a ≤ a := !nat.le.refl + +notation 2 := pnat.pos 2 dec_trivial +notation 3 := pnat.pos 3 dec_trivial +definition pone : pnat := pnat.pos 1 dec_trivial + +definition pnat.to_rat [reducible] (n : ℕ+) : ℚ := + pnat.rec_on n (λ n H, of_nat n) + +-- these will come in rat + +theorem rat_of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := sorry + +theorem rat_of_nat_is_pos (n : ℕ) (Hn : n > 0) : of_nat n > 0 := sorry + +theorem rat_of_nat_ge_one (n : ℕ) : n ≥ 1 → of_nat n ≥ 1 := sorry + +theorem ge_one_of_pos {n : ℕ} (Hn : n > 0) : n ≥ 1 := succ_le_of_lt Hn + +theorem rat_of_pnat_ge_one (n : ℕ+) : pnat.to_rat n ≥ 1 := + pnat.rec_on n (λ m h, rat_of_nat_ge_one m (ge_one_of_pos h)) + +theorem rat_of_pnat_is_pos (n : ℕ+) : pnat.to_rat n > 0 := + pnat.rec_on n (λ m h, rat_of_nat_is_pos (m) h) + +-- not used, except maybe in following thm +theorem nat_le_to_rat_le {m n : ℕ} (H : m ≤ n) : of_nat m ≤ of_nat n := sorry + +theorem pnat_le_to_rat_le {m n : ℕ+} (H : m ≤ n) : pnat.to_rat m ≤ pnat.to_rat n := sorry + +definition inv (n : ℕ+) : ℚ := (1 : ℚ) / pnat.to_rat n +postfix `⁻¹` := inv + +theorem inv_pos (n : ℕ+) : n⁻¹ > 0 := div_pos_of_pos !rat_of_pnat_is_pos + +theorem inv_le_one (n : ℕ+) : n⁻¹ ≤ (1 : ℚ) := sorry + +theorem pone_inv : pone⁻¹ = 1 := rfl -- ? Why is this rfl? + +theorem add_invs_nonneg (m n : ℕ+) : 0 ≤ m⁻¹ + n⁻¹ := + begin + apply rat.le_of_lt, + apply rat.add_pos, + repeat apply inv_pos, + end + +theorem half_shrink (n : ℕ+) : (2 * n)⁻¹ ≤ n⁻¹ := sorry + +theorem inv_ge_of_le {p q : ℕ+} (H : p ≤ q) : q⁻¹ ≤ p⁻¹ := sorry + +theorem padd_halves (p : ℕ+) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := sorry + +theorem add_halves_double (m n : ℕ+) : + m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) := + have simp [visible] : ∀ a b : ℚ, (a + a) + (b + b) = (a + b) + (a + b), from sorry, + by rewrite [-padd_halves m, -padd_halves n, simp] + +theorem pnat_div_helper {p q : ℕ+} : (p * q)⁻¹ = p⁻¹ * q⁻¹ := sorry + +theorem inv_mul_le_inv (p q : ℕ+) : (p * q)⁻¹ ≤ q⁻¹ := + begin + rewrite [pnat_div_helper, -{q⁻¹}rat.one_mul at {2}], + apply rat.mul_le_mul, + apply inv_le_one, + apply rat.le.refl, + apply rat.le_of_lt, + apply inv_pos, + apply rat.le_of_lt rat.zero_lt_one + end + +theorem pnat_mul_assoc (a b c : ℕ+) : a * b * c = a * (b * c) := sorry + +theorem s_mul_assoc_lemma_3 (a b n : ℕ+) (p : ℚ) : + p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ := sorry + +theorem pnat.mul_le_mul_left (p q : ℕ+) : q ≤ p * q := sorry + +------------------------------------- +-- theorems to add to (ordered) field and/or rat + +theorem div_two (a : ℚ) : (a + a) / (1 + 1) = a := sorry + +theorem two_pos : (1 : ℚ) + 1 > 0 := rat.add_pos rat.zero_lt_one rat.zero_lt_one + +theorem find_midpoint {a b : ℚ} (H : a > b) : ∃ c : ℚ, a > b + c := + exists.intro ((a - b) / (1 + 1)) + (have H2 [visible] : a + a > (b + b) + (a - b), from calc + a + a > b + a : rat.add_lt_add_right H + ... = b + a + b - b : rat.add_sub_cancel + ... = (b + b) + (a - b) : sorry, -- simp + have H3 [visible] : (a + a) / (1 + 1) > ((b + b) + (a - b)) / (1 + 1), + from div_lt_div_of_lt_of_pos H2 two_pos, + by rewrite [div_two at H3, -div_add_div_same at H3, div_two at H3]; exact H3) + +constant ceil : ℚ → ℕ + +theorem ceil_ge (a : ℚ) : of_nat (ceil a) ≥ a := sorry + +theorem add_sub_comm (a b c d : ℚ) : a + b - (c + d) = (a - c) + (b - d) := sorry + +theorem div_helper (a b : ℚ) : (1 / (a * b)) * a = 1 / b := sorry + +theorem abs_add_three (a b c : ℚ) : abs (a + b + c) ≤ abs a + abs b + abs c := sorry + +theorem add_le_add_three (a b c d e f : ℚ) (H1 : a ≤ d) (H2 : b ≤ e) (H3 : c ≤ f) : + a + b + c ≤ d + e + f := sorry + +theorem distrib_three_right (a b c d : ℚ) : (a + b + c) * d = a * d + b * d + c * d := sorry + +theorem mul_le_mul_of_mul_div_le (a b c d : ℚ) : a * (b / c) ≤ d → b * a ≤ d * c := sorry + +definition pceil (a : ℚ) : ℕ+ := pnat.pos (ceil a + 1) (sorry) + +theorem pceil_helper {a : ℚ} {n : ℕ+} (H : pceil a ≤ n) : n⁻¹ ≤ 1 / a := sorry + +theorem s_mul_assoc_lemma_4 {n : ℕ+} {ε q : ℚ} (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) : + q * n⁻¹ ≤ ε := + begin + let H2 := pceil_helper H, + let H3 := mul_le_of_le_div (pos_div_of_pos_of_pos Hq Hε) H2, + rewrite -(one_mul ε), + apply mul_le_mul_of_mul_div_le, + exact H3 + end + +theorem of_nat_add (a b : ℕ) : of_nat (a + b) = of_nat a + of_nat b := sorry -- did Jeremy add this? +------------------------------------- +-- small helper lemmas + +theorem find_thirds (a b : ℚ) : ∃ n : ℕ+, a + n⁻¹ + n⁻¹ + n⁻¹ < a + b := sorry + +theorem squeeze {a b : ℚ} (H : ∀ j : ℕ+, a ≤ b + j⁻¹ + j⁻¹ + j⁻¹) : a ≤ b := + begin + apply rat.le_of_not_gt, + intro Hb, + apply (exists.elim (find_midpoint Hb)), + intros c Hc, + apply (exists.elim (find_thirds b c)), + intros j Hbj, + have Ha : a > b + j⁻¹ + j⁻¹ + j⁻¹, from lt.trans Hbj Hc, + exact absurd !H (not_le_of_gt Ha) + end + +theorem rewrite_helper (a b c d : ℚ) : a * b - c * d = a * (b - d) + (a - c) * d := + sorry + +theorem rewrite_helper3 (a b c d e f g: ℚ) : a * (b + c) - (d * e + f * g) = + (a * b - d * e) + (a * c - f * g) := sorry + +theorem rewrite_helper4 (a b c d : ℚ) : a * b - c * d = (a * b - a * d) + (a * d - c * d) := sorry + +theorem rewrite_helper5 (a b x y : ℚ) : a - b = (a - x) + (x - y) + (y - b) := sorry + +theorem rewrite_helper7 (a b c d x : ℚ) : + a * b * c - d = (b * c) * (a - x) + (x * b * c - d) := sorry + +theorem ineq_helper (a b : ℚ) (k m n : ℕ+) (H : a ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) + (H2 : b ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) : + (pnat.to_rat k) * a + b * (pnat.to_rat k) ≤ m⁻¹ + n⁻¹ := sorry + +theorem factor_lemma (a b c d e : ℚ) : abs (a + b + c - (d + (b + e))) = abs ((a - d) + (c - e)) := + sorry + +theorem factor_lemma_2 (a b c d : ℚ) : (a + b) + (c + d) = (a + c) + (d + b) := sorry + + +------------------------------------- +-- The only sorry's after this point are for the simplifier. + +-------------------------------------- +-------------------------------------- +-- define cauchy sequences and equivalence. show equivalence actually is one + +notation `seq` := ℕ+ → ℚ + +definition regular (s : seq) := ∀ m n : ℕ+, abs (s m - s n) ≤ m⁻¹ + n⁻¹ + +definition equiv (s t : seq) := ∀ n : ℕ+, abs (s n - t n) ≤ n⁻¹ + n⁻¹ +infix `≡` := equiv + +theorem equiv.refl (s : seq) : s ≡ s := + begin + rewrite ↑equiv, + intros, + rewrite [rat.sub_self, abs_zero], + apply add_invs_nonneg + end + +theorem equiv.symm (s t : seq) (H : s ≡ t) : t ≡ s := + begin + rewrite ↑equiv at *, + intros, + rewrite [-abs_neg, neg_sub], + exact H n + end + +theorem bdd_of_eq {s t : seq} (H : s ≡ t) : + ∀ j : ℕ+, ∀ n : ℕ+, n ≥ 2 * j → abs (s n - t n) ≤ j⁻¹ := + begin + rewrite ↑equiv at *, + intros [j, n, Hn], + apply rat.le.trans, + apply H n, + rewrite -(padd_halves j), + apply rat.add_le_add, + apply inv_ge_of_le Hn, + apply inv_ge_of_le Hn + end + +theorem eq_of_bdd {s t : seq} (Hs : regular s) (Ht : regular t) + (H : ∀ j : ℕ+, ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ j⁻¹) : s ≡ t := + begin + rewrite ↑equiv, + intros, + have Hj : (∀ j : ℕ+, abs (s n - t n) ≤ n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹), begin + intros, + apply exists.elim (H j), + intros [Nj, HNj], + rewrite [-(rat.sub_add_cancel (s n) (s (max j Nj))), rat.add.assoc (s n + -s (max j Nj)), + ↑regular at *], + apply rat.le.trans, + apply abs_add_le_abs_add_abs, + apply rat.le.trans, + apply rat.add_le_add, + apply Hs, + rewrite [-(rat.sub_add_cancel (s (max j Nj)) (t (max j Nj))), rat.add.assoc], + apply abs_add_le_abs_add_abs, + apply rat.le.trans, + apply rat.add_le_add_left, + apply rat.add_le_add, + apply HNj (max j Nj) (max_right j Nj), + apply Ht, + have simp : ∀ m : ℕ+, n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = (n⁻¹ + n⁻¹ + j⁻¹) + (m⁻¹ + m⁻¹), + from sorry, -- simplifier + rewrite simp, + have Hms : (max j Nj)⁻¹ + (max j Nj)⁻¹ ≤ j⁻¹ + j⁻¹, begin + apply rat.add_le_add, + apply inv_ge_of_le (max_left j Nj), + apply inv_ge_of_le (max_left j Nj), + end, + apply (calc + n⁻¹ + n⁻¹ + j⁻¹ + ((max j Nj)⁻¹ + (max j Nj)⁻¹) ≤ n⁻¹ + n⁻¹ + j⁻¹ + (j⁻¹ + j⁻¹) : + rat.add_le_add_left Hms + ... = n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹ : by rewrite *rat.add.assoc) + end, + apply (squeeze Hj) + end + +theorem eq_of_bdd_var {s t : seq} (Hs : regular s) (Ht : regular t) + (H : ∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε) : s ≡ t := + begin + apply eq_of_bdd, + apply Hs, + apply Ht, + intros, + apply H j⁻¹, + apply inv_pos + end + +theorem pnat_bound {ε : ℚ} (Hε : ε > 0) : ∃ p : ℕ+, p⁻¹ ≤ ε := + begin + fapply exists.intro, + exact (pceil (1 / ε)), + rewrite -(rat.div_div (rat.ne_of_gt Hε)) at {2}, + apply pceil_helper, + apply pnat.le.refl + end + +theorem bdd_of_eq_var {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) : + ∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε := + begin + intro ε Hε, + apply (exists.elim (pnat_bound Hε)), + intro N HN, + let Bd' := bdd_of_eq Heq N, + fapply exists.intro, + exact 2 * N, + intro n Hn, + apply rat.le.trans, + apply Bd' n Hn, + apply HN + end + +theorem equiv.trans (s t u : seq) (Hs : regular s) (Ht : regular t) (Hu : regular u) + (H : s ≡ t) (H2 : t ≡ u) : s ≡ u := + begin + apply (eq_of_bdd Hs Hu), + intros, + fapply exists.intro, + exact 2 * (2 * j), + intros [n, Hn], + rewrite [-rat.sub_add_cancel (s n) (t n), rat.add.assoc], + apply rat.le.trans, + apply abs_add_le_abs_add_abs, + have Hst : abs (s n - t n) ≤ (2 * j)⁻¹, from bdd_of_eq H _ _ Hn, + have Htu : abs (t n - u n) ≤ (2 * j)⁻¹, from bdd_of_eq H2 _ _ Hn, + rewrite -(padd_halves j), + apply rat.add_le_add, + apply Hst, apply Htu + -- assumption, assumption + end + +----------------------------------- +-- define operations on cauchy sequences. show operations preserve regularity + +definition K (s : seq) : ℕ+ := pnat.pos (ceil (abs (s pone)) + 1 + 1) dec_trivial + +theorem canon_bound {s : seq} (Hs : regular s) (n : ℕ+) : abs (s n) ≤ pnat.to_rat (K s) := + calc + abs (s n) = abs (s n - s pone + s pone) : by rewrite rat.sub_add_cancel + ... ≤ abs (s n - s pone) + abs (s pone) : abs_add_le_abs_add_abs + ... ≤ n⁻¹ + pone⁻¹ + abs (s pone) : rat.add_le_add_right !Hs + ... = n⁻¹ + (1 + abs (s pone)) : by rewrite [pone_inv, rat.add.assoc] + ... ≤ 1 + (1 + abs (s pone)) : rat.add_le_add_right (inv_le_one n) + ... = abs (s pone) + (1 + 1) : + by rewrite [add.comm 1 (abs (s pone)), rat.add.comm 1, rat.add.assoc] + ... ≤ of_nat (ceil (abs (s pone))) + (1 + 1) : rat.add_le_add_right (!ceil_ge) + ... = of_nat (ceil (abs (s pone)) + (1 + 1)) : by rewrite of_nat_add + ... = of_nat (ceil (abs (s pone)) + 1 + 1) : by rewrite nat.add.assoc + +definition K₂ (s t : seq) := max (K s) (K t) + +theorem K₂_symm (s t : seq) : K₂ s t = K₂ t s := + if H : K s < K t then + (have H1 [visible] : K₂ s t = K t, from max_eq_right H, + have H2 [visible] : K₂ t s = K t, from max_eq_left (pnat.not_lt_of_le (pnat.le_of_lt H)), + by rewrite [H1, -H2]) + else + (have H1 [visible] : K₂ s t = K s, from max_eq_left H, + if J : K t < K s then + (have H2 [visible] : K₂ t s = K s, from max_eq_right J, by rewrite [H1, -H2]) + else + (have Heq [visible] : K t = K s, from + pnat.eq_of_le_of_ge (pnat.le_of_not_lt H) (pnat.le_of_not_lt J), + by rewrite [↑K₂, Heq])) + +theorem canon_2_bound_left (s t : seq) (Hs : regular s) (n : ℕ+) : + abs (s n) ≤ pnat.to_rat (K₂ s t) := + calc + abs (s n) ≤ pnat.to_rat (K s) : canon_bound Hs n + ... ≤ pnat.to_rat (K₂ s t) : pnat_le_to_rat_le (!max_left) + +theorem canon_2_bound_right (s t : seq) (Ht : regular t) (n : ℕ+) : + abs (t n) ≤ pnat.to_rat (K₂ s t) := + calc + abs (t n) ≤ pnat.to_rat (K t) : canon_bound Ht n + ... ≤ pnat.to_rat (K₂ s t) : pnat_le_to_rat_le (!max_right) + + +definition sadd (s t : seq) : seq := λ n, (s (2 * n)) + (t (2 * n)) + +theorem reg_add_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (sadd s t) := + begin + rewrite [↑regular at *, ↑sadd], + intros, + rewrite add_sub_comm, + apply rat.le.trans, + apply abs_add_le_abs_add_abs, + rewrite add_halves_double, + apply rat.add_le_add, + apply Hs, + apply Ht + end + +definition smul (s t : seq) : seq := λ n : ℕ+, (s ((K₂ s t) * 2 * n)) * (t ((K₂ s t) * 2 * n)) + +theorem reg_mul_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (smul s t) := + begin + rewrite [↑regular at *, ↑smul], + intros, + rewrite rewrite_helper, + apply rat.le.trans, + apply abs_add_le_abs_add_abs, + apply rat.le.trans, + apply rat.add_le_add, + rewrite abs_mul, + apply rat.mul_le_mul_of_nonneg_right, + apply canon_2_bound_left s t Hs, + apply abs_nonneg, + rewrite abs_mul, + apply rat.mul_le_mul_of_nonneg_left, + apply canon_2_bound_right s t Ht, + apply abs_nonneg, + apply ineq_helper, + apply Ht, + apply Hs + end + +definition sneg (s : seq) : seq := λ n : ℕ+, - (s n) + +theorem reg_neg_reg {s : seq} (Hs : regular s) : regular (sneg s) := + begin + rewrite [↑regular at *, ↑sneg], + intros, + rewrite [-abs_neg, neg_sub, sub_neg_eq_add, rat.add.comm], + apply Hs + end + +----------------------------------- +-- show properties of +, *, - + +definition zero : seq := λ n, 0 + +definition one : seq := λ n, 1 + +theorem s_add_comm (s t : seq) : sadd s t ≡ sadd t s := + begin + rewrite ↑sadd, + intros n, + rewrite [sub_add_eq_sub_sub, rat.add_sub_cancel, rat.sub_self, abs_zero], + apply add_invs_nonneg + end + +theorem s_add_assoc (s t u : seq) (Hs : regular s) (Hu : regular u) : + sadd (sadd s t) u ≡ sadd s (sadd t u) := + begin + rewrite [↑sadd, ↑equiv, ↑regular at *], + intros, + rewrite factor_lemma, + apply rat.le.trans, + apply abs_add_le_abs_add_abs, + apply rat.le.trans, + rotate 1, + apply rat.add_le_add_right, + apply half_shrink, + rewrite [-(padd_halves (2 * n)), -(padd_halves n), factor_lemma_2], + apply rat.add_le_add, + apply Hs, + apply Hu + end + +theorem s_mul_comm (s t : seq) : smul s t ≡ smul t s := + begin + rewrite ↑smul, + intros n, + rewrite [*(K₂_symm s t), rat.mul.comm, rat.sub_self, abs_zero], + apply add_invs_nonneg + end + +definition DK (s t : seq) := (K₂ s t) * 2 +theorem DK_rewrite (s t : seq) : (K₂ s t) * 2 = DK s t := rfl + +definition TK (s t u : seq) := (DK (λ (n : ℕ+), s (mul (DK s t) n) * t (mul (DK s t) n)) u) + +theorem TK_rewrite (s t u : seq) : + (DK (λ (n : ℕ+), s (mul (DK s t) n) * t (mul (DK s t) n)) u) = TK s t u := rfl + +theorem s_mul_assoc_lemma (s t u : seq) (a b c d : ℕ+) : + abs (s a * t a * u b - s c * t d * u d) ≤ abs (t a) * abs (u b) * abs (s a - s c) + + abs (s c) * abs (t a) * abs (u b - u d) + abs (s c) * abs (u d) * abs (t a - t d) := + begin + rewrite (rewrite_helper7 _ _ _ _ (s c)), + apply rat.le.trans, + apply abs_add_le_abs_add_abs, + rewrite rat.add.assoc, + apply rat.add_le_add, + rewrite 2 abs_mul, + apply rat.le.refl, + rewrite [*rat.mul.assoc, -rat.mul_sub_left_distrib, -rat.left_distrib, abs_mul], + apply rat.mul_le_mul_of_nonneg_left, + rewrite rewrite_helper, + apply rat.le.trans, + apply abs_add_le_abs_add_abs, + apply rat.add_le_add, + rewrite abs_mul, apply rat.le.refl, + rewrite [abs_mul, rat.mul.comm], apply rat.le.refl, + apply abs_nonneg + end + +definition Kq (s : seq) := pnat.to_rat (K s) + 1 +theorem Kq_bound {s : seq} (H : regular s) : ∀ n, abs (s n) ≤ Kq s := + begin + intros, + apply rat.le_of_lt, + apply rat.lt_of_le_of_lt, + apply canon_bound H, + apply rat.lt_add_of_pos_right, + apply rat.zero_lt_one + end + +theorem Kq_bound_nonneg {s : seq} (H : regular s) : 0 ≤ Kq s := + rat.le.trans !abs_nonneg (Kq_bound H 2) + +theorem Kq_bound_pos {s : seq} (H : regular s) : 0 < Kq s := + have H1 : 0 ≤ pnat.to_rat (K s), from rat.le.trans (!abs_nonneg) (canon_bound H 2), + add_pos_of_nonneg_of_pos H1 rat.zero_lt_one + +theorem s_mul_assoc_lemma_5 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) + (a b c : ℕ+) : abs (t a) * abs (u b) * abs (s a - s c) ≤ (Kq t) * (Kq u) * (a⁻¹ + c⁻¹) := + begin + repeat apply rat.mul_le_mul, + apply Kq_bound Ht, + apply Kq_bound Hu, + apply abs_nonneg, + apply Kq_bound_nonneg Ht, + apply Hs, + apply abs_nonneg, + apply rat.mul_nonneg, + apply Kq_bound_nonneg Ht, + apply Kq_bound_nonneg Hu, + end + +theorem s_mul_assoc_lemma_2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) + (a b c d : ℕ+) : + abs (t a) * abs (u b) * abs (s a - s c) + abs (s c) * abs (t a) * abs (u b - u d) + + abs (s c) * abs (u d) * abs (t a - t d) ≤ + (Kq t) * (Kq u) * (a⁻¹ + c⁻¹) + (Kq s) * (Kq t) * (b⁻¹ + d⁻¹) + (Kq s) * (Kq u) * (a⁻¹ + d⁻¹) := + begin + apply add_le_add_three, + repeat apply rat.mul_le_mul, + apply Kq_bound Ht, + apply Kq_bound Hu, + apply abs_nonneg, + apply Kq_bound_nonneg Ht, + apply Hs, + apply abs_nonneg, + apply rat.mul_nonneg, + apply Kq_bound_nonneg Ht, + apply Kq_bound_nonneg Hu, + repeat apply rat.mul_le_mul, + apply Kq_bound Hs, + apply Kq_bound Ht, + apply abs_nonneg, + apply Kq_bound_nonneg Hs, + apply Hu, + apply abs_nonneg, + apply rat.mul_nonneg, + apply Kq_bound_nonneg Hs, + apply Kq_bound_nonneg Ht, + repeat apply rat.mul_le_mul, + apply Kq_bound Hs, + apply Kq_bound Hu, + apply abs_nonneg, + apply Kq_bound_nonneg Hs, + apply Ht, + apply abs_nonneg, + apply rat.mul_nonneg, + apply Kq_bound_nonneg Hs, + apply Kq_bound_nonneg Hu + end + +theorem s_mul_assoc {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) : + smul (smul s t) u ≡ smul s (smul t u) := + begin + apply eq_of_bdd_var, + repeat apply reg_mul_reg, + apply Hs, + apply Ht, + apply Hu, + apply reg_mul_reg Hs, + apply reg_mul_reg Ht Hu, + intros, + fapply exists.intro, + rotate 1, + intros, + rewrite [↑smul, *DK_rewrite, *TK_rewrite, -*pnat_mul_assoc, -*rat.mul.assoc], + apply rat.le.trans, + apply s_mul_assoc_lemma, + apply rat.le.trans, + apply s_mul_assoc_lemma_2, + apply Hs, + apply Ht, + apply Hu, + rewrite [*s_mul_assoc_lemma_3, -distrib_three_right], + apply s_mul_assoc_lemma_4, + apply a, + repeat apply rat.add_pos, + repeat apply rat.mul_pos, + apply Kq_bound_pos Ht, + apply Kq_bound_pos Hu, + apply rat.add_pos, + repeat apply inv_pos, + repeat apply rat.mul_pos, + apply Kq_bound_pos Hs, + apply Kq_bound_pos Ht, + apply rat.add_pos, + repeat apply inv_pos, + repeat apply rat.mul_pos, + apply Kq_bound_pos Hs, + apply Kq_bound_pos Hu, + apply rat.add_pos, + repeat apply inv_pos, + apply a_1 + end + +theorem zero_is_reg : regular zero := + begin + rewrite [↑regular, ↑zero], + intros, + rewrite [rat.sub_zero, abs_zero], + apply add_invs_nonneg + end + +theorem s_zero_add (s : seq) (H : regular s) : sadd zero s ≡ s := + begin + rewrite [↑sadd, ↑zero, ↑equiv, ↑regular at H], + intros, + rewrite [rat.zero_add], + apply rat.le.trans, + apply H, + apply rat.add_le_add, + apply half_shrink, + apply rat.le.refl + end + +theorem s_add_zero (s : seq) (H : regular s) : sadd s zero ≡ s := + begin + rewrite [↑sadd, ↑zero, ↑equiv, ↑regular at H], + intros, + rewrite [rat.add_zero], + apply rat.le.trans, + apply H, + apply rat.add_le_add, + apply half_shrink, + apply rat.le.refl + end + + theorem s_neg_cancel (s : seq) (H : regular s) : sadd (sneg s) s ≡ zero := + begin + rewrite [↑sadd, ↑sneg, ↑regular at H, ↑zero, ↑equiv], + intros, + rewrite [neg_add_eq_sub, rat.sub_self, rat.sub_zero, abs_zero], + apply add_invs_nonneg + end + +theorem add_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) + (Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : sadd s t ≡ sadd u v := + begin + rewrite [↑sadd, ↑equiv at *], + intros, + rewrite [add_sub_comm, add_halves_double], + apply rat.le.trans, + apply abs_add_le_abs_add_abs, + apply rat.add_le_add, + apply Esu, + apply Etv + end + +theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c : ℕ+) (j : ℕ+) : + ∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → abs (s (a * n) * t (b * n) - s (c * n) * t (c * n)) ≤ j⁻¹ := + begin + fapply exists.intro, + exact (pceil (((pnat.to_rat (K s)) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) * + (pnat.to_rat (K t))) * (pnat.to_rat j))), + intros n Hn, + rewrite rewrite_helper4, + apply rat.le.trans, + apply abs_add_le_abs_add_abs, + apply rat.le.trans, + rotate 1, + show n⁻¹ * ((pnat.to_rat (K s)) * (b⁻¹ + c⁻¹)) + + n⁻¹ * ((a⁻¹ + c⁻¹) * (pnat.to_rat (K t))) ≤ j⁻¹, begin + rewrite -rat.left_distrib, + apply rat.le.trans, + apply rat.mul_le_mul_of_nonneg_right, + apply pceil_helper Hn, + apply rat.le_of_lt, + apply rat.add_pos, + apply rat.mul_pos, + apply rat_of_pnat_is_pos, + apply rat.add_pos, + repeat apply inv_pos, + apply rat.mul_pos, + apply rat.add_pos, + repeat apply inv_pos, + apply rat_of_pnat_is_pos, + rewrite div_helper, + apply rat.le.refl + end, + apply rat.add_le_add, + rewrite [-rat.mul_sub_left_distrib, abs_mul], + apply rat.le.trans, + apply rat.mul_le_mul, + apply canon_bound, + apply Hs, + apply Ht, + apply abs_nonneg, + apply rat.le_of_lt, + apply rat_of_pnat_is_pos, + rewrite [*pnat_div_helper, -rat.right_distrib, -rat.mul.assoc, rat.mul.comm], + apply rat.mul_le_mul_of_nonneg_left, + apply rat.le.refl, + apply rat.le_of_lt, + apply inv_pos, + rewrite [-rat.mul_sub_right_distrib, abs_mul], + apply rat.le.trans, + apply rat.mul_le_mul, + apply Hs, + apply canon_bound, + apply Ht, + apply abs_nonneg, + apply add_invs_nonneg, + rewrite [*pnat_div_helper, -rat.right_distrib, mul.comm _ n⁻¹, rat.mul.assoc], + apply rat.mul_le_mul, + apply rat.le.refl, + apply rat.le.refl, + apply rat.le_of_lt, + apply rat.mul_pos, + apply rat.add_pos, + repeat apply inv_pos, + apply rat_of_pnat_is_pos, + apply rat.le_of_lt, + apply inv_pos + end + +theorem s_distrib {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) : + smul s (sadd t u) ≡ sadd (smul s t) (smul s u) := + begin + /- apply eq_of_bdd, + apply reg_mul_reg, + eassumption, + apply reg_add_reg, + repeat eassumption, + apply reg_add_reg, + repeat eassumption, + apply reg_mul_reg, + repeat eassumption, + apply reg_mul_reg, + repeat eassumption,-/ + apply eq_of_bdd, + apply reg_mul_reg, + apply Hs, + apply reg_add_reg, + apply Ht, + apply Hu, + apply reg_add_reg, + apply reg_mul_reg, + rotate 2, + apply reg_mul_reg, + apply Hs, + apply Hu, + rotate 1, + apply Hs, + apply Ht, + intros, + let exh1 := λ a b c, mul_bound_helper Hs Ht a b c (2 * j), + apply exists.elim, + apply exh1, + rotate 3, + intros N1 HN1, + let exh2 := λ d e f, mul_bound_helper Hs Hu d e f (2 * j), + apply exists.elim, + apply exh2, + rotate 3, + intros N2 HN2, + fapply exists.intro, + exact (max N1 N2), + intros n Hn, + rewrite [↑sadd at *, ↑smul, rewrite_helper3, -padd_halves j, -*pnat_mul_assoc at *], + apply rat.le.trans, + apply abs_add_le_abs_add_abs, + apply rat.add_le_add, + apply HN1, + apply ple.trans, + apply max_left N1 N2, + apply Hn, + apply HN2, + apply ple.trans, + apply max_right N1 N2, + apply Hn + end + +theorem mul_zero_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t) (Htz : t ≡ zero) : + smul s t ≡ zero := + begin + apply eq_of_bdd_var, + apply reg_mul_reg Hs Ht, + apply zero_is_reg, + intro ε Hε, + let Bd := bdd_of_eq_var Ht zero_is_reg Htz (ε / (Kq s)) + (pos_div_of_pos_of_pos Hε (Kq_bound_pos Hs)), + apply exists.elim Bd, + intro N HN, + fapply exists.intro, + exact N, + intros [n, Hn], + rewrite [↑equiv at Htz, ↑zero at *, rat.sub_zero, ↑smul, abs_mul], + apply rat.le.trans, + apply rat.mul_le_mul, + apply Kq_bound Hs, + let HN' := λ n, (!rat.sub_zero ▸ HN n), + apply HN', + apply ple.trans Hn, + apply pnat.mul_le_mul_left, + apply abs_nonneg, + apply rat.le_of_lt (Kq_bound_pos Hs), + rewrite (rat.mul_div_cancel' (ne.symm (rat.ne_of_lt (Kq_bound_pos Hs)))), + apply rat.le.refl + end + +theorem neg_bound_eq_bound (s : seq) : K (sneg s) = K s := + by rewrite [↑K, ↑sneg, abs_neg] + +theorem neg_bound2_eq_bound2 (s t : seq) : K₂ s (sneg t) = K₂ s t := + by rewrite [↑K₂, neg_bound_eq_bound] + +theorem sneg_def (s : seq) : (λ (n : ℕ+), -(s n)) = sneg s := rfl + +theorem mul_neg_equiv_neg_mul {s t : seq} : smul s (sneg t) ≡ sneg (smul s t) := + begin + rewrite [↑equiv, ↑smul], + intros, + rewrite [↑sneg, *sub_neg_eq_add, -neg_mul_eq_mul_neg, rat.add.comm, *sneg_def, + *neg_bound2_eq_bound2, rat.sub_self, abs_zero], + apply add_invs_nonneg + end + +theorem equiv_of_diff_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t) + (H : sadd s (sneg t) ≡ zero) : s ≡ t := + begin + have simp : ∀ a b c d e : ℚ, a + b + c + (d + e) = (b + d) + a + e + c, from sorry, + apply eq_of_bdd Hs Ht, + intros, + let He := bdd_of_eq H, + fapply exists.intro, + apply (2 * (2 * (2 * j))), + intros n Hn, + rewrite (rewrite_helper5 _ _ (s (2 * n)) (t (2 * n))), + apply rat.le.trans, + apply abs_add_three, + apply rat.le.trans, + apply add_le_add_three, + apply Hs, + rewrite [↑sadd at He, ↑sneg at He, ↑zero at He], + let He' := λ a b c, !rat.sub_zero ▸ (He a b c), + apply (He' _ _ Hn), + apply Ht, + rewrite [simp, padd_halves, -(padd_halves j), -(padd_halves (2 * j)), -*rat.add.assoc], + apply rat.add_le_add_right, + apply add_le_add_three, + repeat (apply rat.le.trans; apply inv_ge_of_le Hn; apply half_shrink) + end + +theorem s_sub_cancel (s : seq) : sadd s (sneg s) ≡ zero := + begin + rewrite [↑equiv, ↑sadd, ↑sneg, ↑zero], + intros, + rewrite [rat.sub_zero, rat.sub_self, abs_zero], + apply add_invs_nonneg + end + +theorem diff_equiv_zero_of_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (H : s ≡ t) : + sadd s (sneg t) ≡ zero := + begin + let Hnt := reg_neg_reg Ht, + let Hsnt := reg_add_reg Hs Hnt, + let Htnt := reg_add_reg Ht Hnt, + apply equiv.trans, + rotate 4, + apply s_sub_cancel t, + rotate 2, + apply zero_is_reg, + apply add_well_defined, + --repeat assumption, + apply Hs, + apply Hnt, + apply Ht, + apply Hnt, + apply H, + apply equiv.refl, + --repeat assumption + apply Hsnt, + apply Htnt + end + +theorem mul_well_defined_half1 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) + (Etu : t ≡ u) : smul s t ≡ smul s u := + begin + let Hst := reg_mul_reg Hs Ht, + let Hsu := reg_mul_reg Hs Hu, + let Hnu := reg_neg_reg Hu, + let Hstu := reg_add_reg Hst Hsu, + let Hsnu := reg_mul_reg Hs Hnu, + let Htnu := reg_add_reg Ht Hnu, +-- let Hstsu := reg_add_reg Hst Hsnu, + apply equiv_of_diff_equiv_zero, + apply Hst, + apply Hsu, + apply equiv.trans, + apply reg_add_reg, + apply Hst, + apply reg_neg_reg Hsu, + rotate 1, + apply zero_is_reg, + apply equiv.symm, + apply add_well_defined, + rotate 2, + apply reg_mul_reg Hs Ht, + apply reg_neg_reg Hsu, + apply equiv.refl, + apply mul_neg_equiv_neg_mul, + apply equiv.trans, + rotate 3, + apply equiv.symm, + apply s_distrib, + apply Hs, apply Ht, apply Hnu, + -- repeat assumption, + rotate 1, + apply reg_add_reg Hst Hsnu, + apply Hst, + apply Hsnu, + apply reg_add_reg Hst Hsnu, + apply reg_mul_reg Hs, + apply reg_add_reg Ht Hnu, + apply zero_is_reg, + apply mul_zero_equiv_zero, + rotate 2, + apply diff_equiv_zero_of_equiv, + apply Ht, + apply Hu, + apply Etu, + apply Hs, + apply Htnu + -- repeat assumption + end + +theorem mul_well_defined_half2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) + (Est : s ≡ t) : smul s u ≡ smul t u := + begin + let Hsu := reg_mul_reg Hs Hu, + let Hus := reg_mul_reg Hu Hs, + let Htu := reg_mul_reg Ht Hu, + let Hut := reg_mul_reg Hu Ht, + apply equiv.trans, + rotate 3, + apply s_mul_comm, + apply equiv.trans, + rotate 3, + apply mul_well_defined_half1, + rotate 2, + apply Ht, + rotate 1, + apply s_mul_comm, + apply Hsu, + apply Hus, + apply Htu, + apply Hus, + apply Hut, + apply Htu, + apply Hu, + apply Hs, + apply Est +end + +theorem mul_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) + (Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : smul s t ≡ smul u v := + begin + apply equiv.trans, + exact reg_mul_reg Hs Ht, + exact reg_mul_reg Hs Hv, + exact reg_mul_reg Hu Hv, + apply mul_well_defined_half1, + apply Hs, apply Ht, apply Hv, apply Etv, + -- repeat assumption, + apply mul_well_defined_half2, +-- repeat assumption + apply Hs, apply Hu, apply Hv, apply Esu + end + +theorem neg_well_defined {s t : seq} (Est : s ≡ t) : sneg s ≡ sneg t := + begin + rewrite [↑sneg, ↑equiv at *], + intros, + rewrite [-abs_neg, neg_sub, sub_neg_eq_add, rat.add.comm], + apply Est + end + +theorem one_is_reg : regular one := + begin + rewrite [↑regular, ↑one], + intros, + rewrite [rat.sub_self, abs_zero], + apply add_invs_nonneg + end + +theorem s_one_mul {s : seq} (H : regular s) : smul one s ≡ s := + begin + rewrite ↑equiv, + intros, + rewrite [↑smul, ↑one, rat.one_mul], + apply rat.le.trans, + apply H, + apply rat.add_le_add_right, + apply inv_mul_le_inv + end + +theorem s_mul_one {s : seq} (H : regular s) : smul s one ≡ s := + begin + apply equiv.trans, + apply reg_mul_reg H one_is_reg, + rotate 2, + apply s_mul_comm, + apply s_one_mul H, + apply reg_mul_reg one_is_reg H, + apply H + end + +--------------------------------------------- +-- create the type of regular sequences and lift theorems + +record reg_seq : Type := + (sq : seq) (is_reg : regular sq) + +definition requiv (s t : reg_seq) := (reg_seq.sq s) ≡ (reg_seq.sq t) +definition requiv.refl (s : reg_seq) : requiv s s := equiv.refl (reg_seq.sq s) +definition requiv.symm (s t : reg_seq) (H : requiv s t) : requiv t s := + equiv.symm (reg_seq.sq s) (reg_seq.sq t) H +definition requiv.trans (s t u : reg_seq) (H : requiv s t) (H2 : requiv t u) : requiv s u := + equiv.trans _ _ _ (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) H H2 + +definition radd (s t : reg_seq) : reg_seq := + reg_seq.mk (sadd (reg_seq.sq s) (reg_seq.sq t)) + (reg_add_reg (reg_seq.is_reg s) (reg_seq.is_reg t)) +infix `+` := radd + +definition rmul (s t : reg_seq) : reg_seq := + reg_seq.mk (smul (reg_seq.sq s) (reg_seq.sq t)) + (reg_mul_reg (reg_seq.is_reg s) (reg_seq.is_reg t)) +infix `*` := rmul + +definition rneg (s : reg_seq) : reg_seq := + reg_seq.mk (sneg (reg_seq.sq s)) (reg_neg_reg (reg_seq.is_reg s)) +prefix `-` := rneg + +definition radd_well_defined {s t u v : reg_seq} (H : requiv s u) (H2 : requiv t v) : + requiv (s + t) (u + v) := + add_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) H H2 + +definition rmul_well_defined {s t u v : reg_seq} (H : requiv s u) (H2 : requiv t v) : + requiv (s * t) (u * v) := + mul_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) H H2 + +definition rneg_well_defined {s t : reg_seq} (H : requiv s t) : requiv (-s) (-t) := + neg_well_defined H + +theorem requiv_is_equiv : equivalence requiv := + mk_equivalence requiv requiv.refl requiv.symm requiv.trans + +definition reg_seq.to_setoid [instance] : setoid reg_seq := + ⦃setoid, r := requiv, iseqv := requiv_is_equiv⦄ + +definition r_zero : reg_seq := + reg_seq.mk (zero) (zero_is_reg) + +definition r_one : reg_seq := + reg_seq.mk (one) (one_is_reg) + +theorem r_add_comm (s t : reg_seq) : requiv (s + t) (t + s) := + s_add_comm (reg_seq.sq s) (reg_seq.sq t) + +theorem r_add_assoc (s t u : reg_seq) : requiv (s + t + u) (s + (t + u)) := + s_add_assoc (reg_seq.sq s) (reg_seq.sq t) (reg_seq.sq u) (reg_seq.is_reg s) (reg_seq.is_reg u) + +theorem r_zero_add (s : reg_seq) : requiv (r_zero + s) s := + s_zero_add (reg_seq.sq s) (reg_seq.is_reg s) + +theorem r_add_zero (s : reg_seq) : requiv (s + r_zero) s := + s_add_zero (reg_seq.sq s) (reg_seq.is_reg s) + +theorem r_neg_cancel (s : reg_seq) : requiv (-s + s) r_zero := + s_neg_cancel (reg_seq.sq s) (reg_seq.is_reg s) + +theorem r_mul_comm (s t : reg_seq) : requiv (s * t) (t * s) := + s_mul_comm (reg_seq.sq s) (reg_seq.sq t) + +theorem r_mul_assoc (s t u : reg_seq) : requiv (s * t * u) (s * (t * u)) := + s_mul_assoc (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) + +theorem r_mul_one (s : reg_seq) : requiv (s * r_one) s := + s_mul_one (reg_seq.is_reg s) + +theorem r_one_mul (s : reg_seq) : requiv (r_one * s) s := + s_one_mul (reg_seq.is_reg s) + +theorem r_distrib (s t u : reg_seq) : requiv (s * (t + u)) (s * t + s * u) := + s_distrib (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) + +---------------------------------------------- +-- take quotients to get ℝ and show it's a comm ring + +namespace real +definition real := quot reg_seq.to_setoid +notation `ℝ` := real + +definition add (x y : ℝ) : ℝ := + (quot.lift_on₂ x y (λ a b, quot.mk (a + b)) + (take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d, + quot.sound (radd_well_defined Hab Hcd))) +infix `+` := add + +definition mul (x y : ℝ) : ℝ := + (quot.lift_on₂ x y (λ a b, quot.mk (a * b)) + (take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d, + quot.sound (rmul_well_defined Hab Hcd))) +infix `*` := mul + +definition neg (x : ℝ) : ℝ := + (quot.lift_on x (λ a, quot.mk (-a)) (take a b : reg_seq, take Hab : requiv a b, + quot.sound (rneg_well_defined Hab))) +prefix `-` := neg + +definition zero : ℝ := quot.mk r_zero +--notation 0 := zero + +definition one : ℝ := quot.mk r_one + +theorem add_comm (x y : ℝ) : x + y = y + x := + quot.induction_on₂ x y (λ s t, quot.sound (r_add_comm s t)) + +theorem add_assoc (x y z : ℝ) : x + y + z = x + (y + z) := + quot.induction_on₃ x y z (λ s t u, quot.sound (r_add_assoc s t u)) + +theorem zero_add (x : ℝ) : zero + x = x := + quot.induction_on x (λ s, quot.sound (r_zero_add s)) + +theorem add_zero (x : ℝ) : x + zero = x := + quot.induction_on x (λ s, quot.sound (r_add_zero s)) + +theorem neg_cancel (x : ℝ) : -x + x = zero := + quot.induction_on x (λ s, quot.sound (r_neg_cancel s)) + +theorem mul_assoc (x y z : ℝ) : x * y * z = x * (y * z) := + quot.induction_on₃ x y z (λ s t u, quot.sound (r_mul_assoc s t u)) + +theorem mul_comm (x y : ℝ) : x * y = y * x := + quot.induction_on₂ x y (λ s t, quot.sound (r_mul_comm s t)) + +theorem one_mul (x : ℝ) : one * x = x := + quot.induction_on x (λ s, quot.sound (r_one_mul s)) + +theorem mul_one (x : ℝ) : x * one = x := + quot.induction_on x (λ s, quot.sound (r_mul_one s)) + +theorem distrib (x y z : ℝ) : x * (y + z) = x * y + x * z := + quot.induction_on₃ x y z (λ s t u, quot.sound (r_distrib s t u)) + +theorem distrib_l (x y z : ℝ) : (x + y) * z = x * z + y * z := + by rewrite [mul_comm, distrib, {x * _}mul_comm, {y * _}mul_comm] -- this shouldn't be necessary + +definition comm_ring [reducible] : algebra.comm_ring ℝ := + begin + fapply algebra.comm_ring.mk, + exact add, + exact add_assoc, + exact zero, + exact zero_add, + exact add_zero, + exact neg, + exact neg_cancel, + exact add_comm, + exact mul, + exact mul_assoc, + apply one, + apply one_mul, + apply mul_one, + apply distrib, + apply distrib_l, + apply mul_comm + end + +end real diff --git a/library/data/real/default.lean b/library/data/real/default.lean new file mode 100644 index 000000000..3f8fea394 --- /dev/null +++ b/library/data/real/default.lean @@ -0,0 +1,6 @@ +/- +Copyright (c) 2014 Microsoft Corporation. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Author: Robert Y. Lewis +-/ +import .basic diff --git a/library/data/real/real.md b/library/data/real/real.md new file mode 100644 index 000000000..d9a17fdf8 --- /dev/null +++ b/library/data/real/real.md @@ -0,0 +1,6 @@ +data.real +======== + +The real numbers. + +* [basic](basic.lean) : the reals as a commutative ring \ No newline at end of file