chore(builtin/Nat): use iff
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
4dc98bc73b
commit
398d83b6d5
2 changed files with 1 additions and 1 deletions
|
@ -36,7 +36,7 @@ axiom add_zeror (a : Nat) : a + 0 = a
|
||||||
axiom add_succr (a b : Nat) : a + (b + 1) = (a + b) + 1
|
axiom add_succr (a b : Nat) : a + (b + 1) = (a + b) + 1
|
||||||
axiom mul_zeror (a : Nat) : a * 0 = 0
|
axiom mul_zeror (a : Nat) : a * 0 = 0
|
||||||
axiom mul_succr (a b : Nat) : a * (b + 1) = a * b + a
|
axiom mul_succr (a b : Nat) : a * (b + 1) = a * b + a
|
||||||
axiom le_def (a b : Nat) : a ≤ b = ∃ c, a + c = b
|
axiom le_def (a b : Nat) : a ≤ b ⟷ ∃ c, a + c = b
|
||||||
axiom induction {P : Nat → Bool} (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : ∀ a, P a
|
axiom induction {P : Nat → Bool} (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : ∀ a, P a
|
||||||
|
|
||||||
theorem induction_on {P : Nat → Bool} (a : Nat) (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : P a
|
theorem induction_on {P : Nat → Bool} (a : Nat) (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : P a
|
||||||
|
|
Binary file not shown.
Loading…
Reference in a new issue