feat(library/standard/logic): add class nonempty

This commit is contained in:
Jeremy Avigad 2014-08-15 08:43:52 -07:00 committed by Leonardo de Moura
parent 2d69303344
commit 39c1683546
3 changed files with 20 additions and 27 deletions

View file

@ -18,15 +18,10 @@ definition u [private] := epsilon (λx, x = true p)
definition v [private] := epsilon (λx, x = false p)
lemma u_def [private] : u = true p :=
sorry
-- previous proof:
-- epsilon_spec (exists_intro true (or_inl (refl true))
-- fully elaborated:
-- @epsilon_spec Prop (λx : Prop, x = true p) (exists_intro true (or_inl (refl true)))
epsilon_spec (exists_intro true (or_inl (refl true)))
lemma v_def [private] : v = false p :=
sorry
-- epsilon_spec (exists_intro false (or_inl (refl false))
epsilon_spec (exists_intro false (or_inl (refl false)))
lemma uv_implies_p [private] : ¬(u = v) p :=
or_elim u_def

View file

@ -2,7 +2,8 @@
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Leonardo de Moura, Jeremy Avigad
import logic.classes.inhabited logic.connectives.eq logic.connectives.quantifiers
import logic.connectives.eq logic.connectives.quantifiers
import logic.classes.inhabited logic.classes.nonempty
import data.subtype data.sum
using subtype
@ -19,33 +20,36 @@ axiom strong_indefinite_description {A : Type} (P : A → Prop) (H : nonempty A)
-- In the presence of classical logic, we could prove this from the weaker
-- axiom indefinite_description {A : Type} {P : A->Prop} (H : ∃x, P x) : { x : A | P x }
theorem nonempty_imp_exists_true {A : Type} (H : nonempty A) : ∃x : A, true :=
nonempty_elim H (take x, exists_intro x trivial)
theorem nonempty_imp_inhabited {A : Type} (H : nonempty A) : inhabited A :=
let u : {x : A | nonempty A → true} := strong_indefinite_description (λa, true) H in
let u : {x : A | (∃x : A, true) → true} := strong_indefinite_description (λa, true) H in
inhabited_intro (elt_of u)
theorem inhabited_exists {A : Type} {P : A → Prop} (H : ∃x, P x) : inhabited A :=
nonempty_imp_inhabited (obtain w Hw, from H, exists_intro w trivial)
nonempty_imp_inhabited (obtain w Hw, from H, nonempty_intro w)
-- the Hilbert epsilon function
-- ----------------------------
definition epsilon {A : Type} {H : inhabited A} (P : A → Prop) : A :=
definition epsilon {A : Type} {H : nonempty A} (P : A → Prop) : A :=
let u : {x : A | (∃y, P y) → P x} :=
strong_indefinite_description P (inhabited_imp_nonempty H) in
strong_indefinite_description P H in
elt_of u
theorem epsilon_spec_aux {A : Type} (H : inhabited A) (P : A → Prop) (Hex : ∃y, P y) :
theorem epsilon_spec_aux {A : Type} (H : nonempty A) (P : A → Prop) (Hex : ∃y, P y) :
P (@epsilon A H P) :=
let u : {x : A | (∃y, P y) → P x} :=
strong_indefinite_description P (inhabited_imp_nonempty H) in
strong_indefinite_description P H in
has_property u Hex
theorem epsilon_spec {A : Type} {P : A → Prop} (Hex : ∃y, P y) :
P (@epsilon A (inhabited_exists Hex) P) :=
epsilon_spec_aux (inhabited_exists Hex) P Hex
P (@epsilon A (exists_imp_nonempty Hex) P) :=
epsilon_spec_aux (exists_imp_nonempty Hex) P Hex
theorem epsilon_singleton {A : Type} (a : A) : @epsilon A (inhabited_intro a) (λ x, x = a) = a :=
theorem epsilon_singleton {A : Type} (a : A) : @epsilon A (nonempty_intro a) (λx, x = a) = a :=
epsilon_spec (exists_intro a (refl a))
@ -54,7 +58,7 @@ epsilon_spec (exists_intro a (refl a))
theorem axiom_of_choice {A : Type} {B : A → Type} {R : Πx, B x → Prop} (H : ∀x, ∃y, R x y) :
∃f, ∀x, R x (f x) :=
let f [inline] := λx, @epsilon _ (inhabited_exists (H x)) (λy, R x y),
let f [inline] := λx, @epsilon _ (exists_imp_nonempty (H x)) (λy, R x y),
H [inline] := take x, epsilon_spec (H x)
in exists_intro f H

View file

@ -1,10 +1,8 @@
----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Leonardo de Moura, Jeremy Avigad
----------------------------------------------------------------------------------------------------
import .basic .eq ..classes.inhabited
import .basic .eq ..classes.nonempty
inductive Exists {A : Type} (P : A → Prop) : Prop :=
| exists_intro : ∀ (a : A), P a → Exists P
@ -78,9 +76,5 @@ iff_intro
(assume H2, obtain (w : A) (Hw : ψ w), from H2,
exists_intro w (or_inr Hw)))
abbreviation nonempty (A : Type) := ∃x : A, true
theorem nonempty_intro {A : Type} (x : A) : nonempty A := exists_intro x trivial
theorem inhabited_imp_nonempty {A : Type} (H : inhabited A) : nonempty A :=
exists_intro (default A) trivial
theorem exists_imp_nonempty {A : Type} {P : A → Prop} (H : ∃x, P x) : nonempty A :=
obtain w Hw, from H, nonempty_intro w