feat(library/data/real): finish coercions from rat to real
This commit is contained in:
parent
811bae5566
commit
3a97079920
3 changed files with 48 additions and 41 deletions
|
@ -946,10 +946,10 @@ theorem const_reg (a : ℚ) : regular (const a) :=
|
|||
end
|
||||
|
||||
theorem add_consts (a b : ℚ) : sadd (const a) (const b) ≡ const (a + b) :=
|
||||
begin
|
||||
rewrite [↑sadd, ↑const],
|
||||
apply equiv.refl
|
||||
end
|
||||
by apply equiv.refl
|
||||
|
||||
theorem mul_consts (a b : ℚ) : smul (const a) (const b) ≡ const (a * b) :=
|
||||
by apply equiv.refl
|
||||
|
||||
---------------------------------------------
|
||||
-- create the type of regular sequences and lift theorems
|
||||
|
@ -1038,6 +1038,8 @@ definition r_const (a : ℚ) : reg_seq := reg_seq.mk (const a) (const_reg a)
|
|||
|
||||
theorem r_add_consts (a b : ℚ) : requiv (r_const a + r_const b) (r_const (a + b)) := add_consts a b
|
||||
|
||||
theorem r_mul_consts (a b : ℚ) : requiv (r_const a * r_const b) (r_const (a * b)) := mul_consts a b
|
||||
|
||||
end s
|
||||
----------------------------------------------
|
||||
-- take quotients to get ℝ and show it's a comm ring
|
||||
|
@ -1128,14 +1130,17 @@ protected definition comm_ring [reducible] : algebra.comm_ring ℝ :=
|
|||
apply mul_comm
|
||||
end
|
||||
|
||||
definition const (a : ℚ) : ℝ := quot.mk (s.r_const a)
|
||||
definition of_rat [coercion] (a : ℚ) : ℝ := quot.mk (s.r_const a)
|
||||
|
||||
theorem add_consts (a b : ℚ) : const a + const b = const (a + b) :=
|
||||
theorem of_rat_add (a b : ℚ) : of_rat a + of_rat b = of_rat (a + b) :=
|
||||
quot.sound (s.r_add_consts a b)
|
||||
|
||||
theorem sub_consts (a b : ℚ) : const a + -const b = const (a - b) := !add_consts
|
||||
theorem of_rat_sub (a b : ℚ) : of_rat a + - of_rat b = of_rat (a - b) := !of_rat_add
|
||||
|
||||
theorem add_half_const (n : ℕ+) : const (2 * n)⁻¹ + const (2 * n)⁻¹ = const (n⁻¹) :=
|
||||
by rewrite [add_consts, pnat.add_halves]
|
||||
theorem of_rat_mul (a b : ℚ) : of_rat a * of_rat b = of_rat (a * b) :=
|
||||
quot.sound (s.r_mul_consts a b)
|
||||
|
||||
theorem add_half_of_rat (n : ℕ+) : of_rat (2 * n)⁻¹ + of_rat (2 * n)⁻¹ = of_rat (n⁻¹) :=
|
||||
by rewrite [of_rat_add, pnat.add_halves]
|
||||
|
||||
end real
|
||||
|
|
|
@ -227,7 +227,7 @@ theorem r_abs_nonneg {x : ℝ} : zero ≤ x → re_abs x = x :=
|
|||
theorem r_abs_nonpos {x : ℝ} : x ≤ zero → re_abs x = -x :=
|
||||
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_neg_abs_of_le_zero Ha))
|
||||
|
||||
theorem abs_const' (a : ℚ) : const (rat.abs a) = re_abs (const a) := quot.sound (s.r_abs_const a)
|
||||
theorem abs_const' (a : ℚ) : of_rat (rat.abs a) = re_abs (of_rat a) := quot.sound (s.r_abs_const a)
|
||||
|
||||
theorem re_abs_is_abs : re_abs = real.abs := funext
|
||||
(begin
|
||||
|
@ -242,30 +242,30 @@ theorem re_abs_is_abs : re_abs = real.abs := funext
|
|||
rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2']
|
||||
end)
|
||||
|
||||
theorem abs_const (a : ℚ) : const (rat.abs a) = abs (const a) :=
|
||||
theorem abs_const (a : ℚ) : of_rat (rat.abs a) = abs (of_rat a) :=
|
||||
by rewrite -re_abs_is_abs -- ????
|
||||
|
||||
theorem rat_approx' (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, re_abs (x - const q) ≤ const n⁻¹ :=
|
||||
theorem rat_approx' (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, re_abs (x - of_rat q) ≤ of_rat n⁻¹ :=
|
||||
quot.induction_on x (λ s n, s.r_rat_approx s n)
|
||||
|
||||
theorem rat_approx (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, abs (x - const q) ≤ const n⁻¹ :=
|
||||
theorem rat_approx (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, abs (x - of_rat q) ≤ of_rat n⁻¹ :=
|
||||
by rewrite -re_abs_is_abs; apply rat_approx'
|
||||
|
||||
noncomputable definition approx (x : ℝ) (n : ℕ+) := some (rat_approx x n)
|
||||
|
||||
theorem approx_spec (x : ℝ) (n : ℕ+) : abs (x - (const (approx x n))) ≤ const n⁻¹ :=
|
||||
theorem approx_spec (x : ℝ) (n : ℕ+) : abs (x - (of_rat (approx x n))) ≤ of_rat n⁻¹ :=
|
||||
some_spec (rat_approx x n)
|
||||
|
||||
theorem approx_spec' (x : ℝ) (n : ℕ+) : abs ((const (approx x n)) - x) ≤ const n⁻¹ :=
|
||||
theorem approx_spec' (x : ℝ) (n : ℕ+) : abs ((of_rat (approx x n)) - x) ≤ of_rat n⁻¹ :=
|
||||
by rewrite abs_sub; apply approx_spec
|
||||
|
||||
notation `r_seq` := ℕ+ → ℝ
|
||||
|
||||
noncomputable definition converges_to (X : r_seq) (a : ℝ) (N : ℕ+ → ℕ+) :=
|
||||
∀ k : ℕ+, ∀ n : ℕ+, n ≥ N k → abs (X n - a) ≤ const k⁻¹
|
||||
∀ k : ℕ+, ∀ n : ℕ+, n ≥ N k → abs (X n - a) ≤ of_rat k⁻¹
|
||||
|
||||
noncomputable definition cauchy (X : r_seq) (M : ℕ+ → ℕ+) :=
|
||||
∀ k : ℕ+, ∀ m n : ℕ+, m ≥ M k → n ≥ M k → abs (X m - X n) ≤ const k⁻¹
|
||||
∀ k : ℕ+, ∀ m n : ℕ+, m ≥ M k → n ≥ M k → abs (X m - X n) ≤ of_rat k⁻¹
|
||||
--set_option pp.implicit true
|
||||
--set_option pp.coercions true
|
||||
|
||||
|
@ -276,18 +276,18 @@ noncomputable definition cauchy (X : r_seq) (M : ℕ+ → ℕ+) :=
|
|||
-- Need to finish the migration to real to fix this.
|
||||
|
||||
--set_option pp.all true
|
||||
theorem add_consts2 (a b : ℚ) : const a + const b = const (a + b) :=
|
||||
!add_consts --quot.sound (s.r_add_consts a b)
|
||||
--theorem add_consts2 (a b : ℚ) : const a + const b = const (a + b) :=
|
||||
-- !add_consts --quot.sound (s.r_add_consts a b)
|
||||
--check add_consts
|
||||
--check add_consts2
|
||||
|
||||
theorem sub_consts2 (a b : ℚ) : const a - const b = const (a - b) := !sub_consts
|
||||
/-theorem sub_consts2 (a b : ℚ) : const a - const b = const (a - b) := !sub_consts
|
||||
|
||||
theorem add_half_const2 (n : ℕ+) : const (2 * n)⁻¹ + const (2 * n)⁻¹ = const (n⁻¹) :=
|
||||
by xrewrite [add_consts2, pnat.add_halves]
|
||||
|
||||
set_option pp.all true
|
||||
by xrewrite [add_consts2, pnat.add_halves]-/
|
||||
|
||||
--set_option pp.all true
|
||||
set_option pp.coercions true
|
||||
theorem cauchy_of_converges_to {X : r_seq} {a : ℝ} {N : ℕ+ → ℕ+} (Hc : converges_to X a N) :
|
||||
cauchy X (λ k, N (2 * k)) :=
|
||||
begin
|
||||
|
@ -302,8 +302,10 @@ theorem cauchy_of_converges_to {X : r_seq} {a : ℝ} {N : ℕ+ → ℕ+} (Hc : c
|
|||
krewrite abs_neg,
|
||||
apply Hc,
|
||||
apply Hn,
|
||||
xrewrite add_half_const2,
|
||||
eapply real.le.refl
|
||||
xrewrite of_rat_add,
|
||||
apply of_rat_le_of_rat_of_le,
|
||||
rewrite pnat.add_halves,
|
||||
apply rat.le.refl
|
||||
end
|
||||
|
||||
definition Nb (M : ℕ+ → ℕ+) := λ k, pnat.max (3 * k) (M (2 * k))
|
||||
|
@ -317,8 +319,8 @@ noncomputable definition lim_seq {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X
|
|||
|
||||
theorem lim_seq_reg_helper {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) {m n : ℕ+}
|
||||
(Hmn : M (2 * n) ≤M (2 * m)) :
|
||||
abs (const (lim_seq Hc m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs
|
||||
(X (Nb M n) - const (lim_seq Hc n)) ≤ const (m⁻¹ + n⁻¹) :=
|
||||
abs (of_rat (lim_seq Hc m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs
|
||||
(X (Nb M n) - of_rat (lim_seq Hc n)) ≤ of_rat (m⁻¹ + n⁻¹) :=
|
||||
begin
|
||||
apply le.trans,
|
||||
apply add_le_add_three,
|
||||
|
@ -333,8 +335,8 @@ theorem lim_seq_reg_helper {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) {m
|
|||
apply pnat.le.trans,
|
||||
apply Hmn,
|
||||
apply Nb_spec_right,
|
||||
rewrite [*add_consts2, rat.add.assoc, pnat.add_halves],
|
||||
apply const_le_const_of_le,
|
||||
rewrite [*of_rat_add, rat.add.assoc, pnat.add_halves],
|
||||
apply of_rat_le_of_rat_of_le,
|
||||
apply rat.add_le_add_right,
|
||||
apply inv_ge_of_le,
|
||||
apply pnat.mul_le_mul_left
|
||||
|
@ -346,8 +348,8 @@ theorem lim_seq_reg {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : s.regula
|
|||
begin
|
||||
rewrite ↑s.regular,
|
||||
intro m n,
|
||||
apply le_of_const_le_const,
|
||||
rewrite [abs_const, -sub_consts, -sub_eq_add_neg, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],--, -sub_consts2, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
|
||||
apply le_of_rat_le_of_rat,
|
||||
rewrite [abs_const, -of_rat_sub, -sub_eq_add_neg, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
|
||||
apply real.le.trans,
|
||||
apply abs_add_three,
|
||||
let Hor := decidable.em (M (2 * m) ≥ M (2 * n)),
|
||||
|
@ -379,22 +381,22 @@ noncomputable definition lim {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) :
|
|||
quot.mk (r_lim_seq Hc)
|
||||
|
||||
theorem re_lim_spec {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) :
|
||||
re_abs ((lim Hc) - (const ((lim_seq Hc) k))) ≤ const k⁻¹ :=
|
||||
re_abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ :=
|
||||
r_lim_seq_spec Hc k
|
||||
|
||||
theorem lim_spec' {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) :
|
||||
abs ((lim Hc) - (const ((lim_seq Hc) k))) ≤ const k⁻¹ :=
|
||||
abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ :=
|
||||
by rewrite -re_abs_is_abs; apply re_lim_spec
|
||||
|
||||
theorem lim_spec {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) :
|
||||
abs ((const ((lim_seq Hc) k)) - (lim Hc)) ≤ const (k)⁻¹ :=
|
||||
abs ((of_rat ((lim_seq Hc) k)) - (lim Hc)) ≤ of_rat (k)⁻¹ :=
|
||||
by rewrite abs_sub; apply lim_spec'
|
||||
|
||||
theorem converges_of_cauchy {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) :
|
||||
converges_to X (lim Hc) (Nb M) :=
|
||||
begin
|
||||
intro k n Hn,
|
||||
rewrite (rewrite_helper10 (X (Nb M n)) (const (lim_seq Hc n))),
|
||||
rewrite (rewrite_helper10 (X (Nb M n)) (of_rat (lim_seq Hc n))),
|
||||
apply le.trans,
|
||||
apply abs_add_three,
|
||||
apply le.trans,
|
||||
|
@ -418,8 +420,8 @@ theorem converges_of_cauchy {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) :
|
|||
rewrite ↑lim_seq,
|
||||
apply approx_spec,
|
||||
apply lim_spec,
|
||||
rewrite 2 add_consts2,
|
||||
apply const_le_const_of_le,
|
||||
rewrite 2 of_rat_add,
|
||||
apply of_rat_le_of_rat_of_le,
|
||||
apply rat.le.trans,
|
||||
apply rat.add_le_add_three,
|
||||
apply rat.le.refl,
|
||||
|
|
|
@ -919,7 +919,7 @@ theorem s_lt_of_le_of_lt {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : r
|
|||
end
|
||||
|
||||
-----------------------------
|
||||
-- const theorems
|
||||
-- of_rat theorems
|
||||
|
||||
theorem const_le_const_of_le {a b : ℚ} (H : a ≤ b) : s_le (const a) (const b) :=
|
||||
begin
|
||||
|
@ -1136,10 +1136,10 @@ section migrate_algebra
|
|||
gt_of_ge_of_gt [trans]
|
||||
end migrate_algebra
|
||||
|
||||
theorem const_le_const_of_le (a b : ℚ) : a ≤ b → const a ≤ const b :=
|
||||
theorem of_rat_le_of_rat_of_le (a b : ℚ) : a ≤ b → of_rat a ≤ of_rat b :=
|
||||
s.r_const_le_const_of_le
|
||||
|
||||
theorem le_of_const_le_const (a b : ℚ) : const a ≤ const b → a ≤ b :=
|
||||
theorem le_of_rat_le_of_rat (a b : ℚ) : of_rat a ≤ of_rat b → a ≤ b :=
|
||||
s.r_le_of_const_le_const
|
||||
|
||||
end real
|
||||
|
|
Loading…
Reference in a new issue